The application of promising gene therapy strategies to clinical trials can occur only after extensive preclinical testing of the substrates used for gene transfer which often are recombinant viruses. The development and production of these clinical reagents must occur in highly specialized laboratories that can handle biohazardous material and can function in accordance with Food and Drug Administration (FDA) regulations under Good Manufacturing Practices (GMP). We have established a biohazard GMP facility called the Human Applications Laboratory dedicated to the production of gene transfer reagents for clinical trials. This newly renovated facility is housed in 2,500 sq ft of laboratory space and has 5 self-contained manufacturing modules, each capable of the production and isolation of different viruses.
The specific aims of the laboratory will be to provide the facilities and expertise to: (1) Establish protocols and standard operating procedures (SOP) for all aspects of human applications of gene therapy that will facilitate FDA certification and assure safety of clinical trials proposed by all investigators; (2) Develop and produce recombinant retroviruses and recombinant adenoviruses that are acceptable to the FDA and Recombinant DNA Advisory Committee (RAC); (3) Isolate, cultivate, genetically modify and harvest human cells for preclinical studies documenting the feasibility and safety of the therapeutic approach; (4) Return to the investigator genetically modified cells in a form suitable for direct administration to patients.

Project Start
1997-09-30
Project End
1998-08-31
Budget Start
1996-10-01
Budget End
1997-09-30
Support Year
5
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Svidritskiy, Egor; Korostelev, Andrei A (2018) Conformational Control of Translation Termination on the 70S Ribosome. Structure 26:821-828.e3
Svidritskiy, Egor; Korostelev, Andrei A (2018) Mechanism of Inhibition of Translation Termination by Blasticidin S. J Mol Biol 430:591-593
Gurda, Brittney L; De Guilhem De Lataillade, Adrien; Bell, Peter et al. (2016) Evaluation of AAV-mediated Gene Therapy for Central Nervous System Disease in Canine Mucopolysaccharidosis VII. Mol Ther 24:206-216
Svidritskiy, Egor; Madireddy, Rohini; Korostelev, Andrei A (2016) Structural Basis for Translation Termination on a Pseudouridylated Stop Codon. J Mol Biol 428:2228-36
Greig, Jenny A; Calcedo, Roberto; Grant, Rebecca L et al. (2016) Intramuscular administration of AAV overcomes pre-existing neutralizing antibodies in rhesus macaques. Vaccine 34:6323-6329
McClain, Lauren E; Davey, Marcus G; Zoltick, Phillip W et al. (2016) Vector serotype screening for use in ovine perinatal lung gene therapy. J Pediatr Surg 51:879-84
Calcedo, Roberto; Wilson, James M (2016) AAV Natural Infection Induces Broad Cross-Neutralizing Antibody Responses to Multiple AAV Serotypes in Chimpanzees. Hum Gene Ther Clin Dev 27:79-82
Svidritskiy, Egor; Korostelev, Andrei A (2015) Ribosome Structure Reveals Preservation of Active Sites in the Presence of a P-Site Wobble Mismatch. Structure 23:2155-61
Wang, Lili; Bell, Peter; Somanathan, Suryanarayan et al. (2015) Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids. Mol Ther 23:1877-87
Calcedo, Roberto; Franco, Judith; Qin, Qiuyue et al. (2015) Preexisting Neutralizing Antibodies to Adeno-Associated Virus Capsids in Large Animals Other Than Monkeys May Confound In Vivo Gene Therapy Studies. Hum Gene Ther Methods 26:103-5

Showing the most recent 10 out of 231 publications