This application is for continued support of the Digestive Diseases Research Core Center (DDRCC) at Washington University St. Louis, which is the central institutional resource for investigators interested in the regulatory mechanisms and pathophysiology of the gastrointestinal tract and liver. The central focus of investigation is on inflammatory bowel diseases and its complications. However, we take a broad view of relevant research and will continue to support research on basic biological processes relevant to inflammatory bowel diseases, even if the systems being studied are not immediately applicable to inflammatory bowel diseases. The DDRCC supports an outstanding Research Base consisting of 62 Investigators in 10 departments with research grants totaling $17.5 million dollars (47% NIDDK funding). The DDRCC sustains its strong Research Base by actively supporting career development of new investigators through its Pilot/Feasibility Program. Nine former and four current Pilot/Feasibility awardees currently contribute to the Research Base. Four research core facilities (Murine Models/Gnotobiotic Core, Morphology Core, Functional Genomics Core and Proteomics Core) play a central role in promoting collaboration and synergy between individuals. They pool resources to provide services and expertise that would be cost and time- prohibitive to develop de novo, and maintain. To facilitate the conduct of clinical and translational research in inflammatory bowel diseases, the Clinical Component of the DDRCC consists of a Tissue Procurement Facility archives clinical samples linked to longitudinal clinical information ( >1,100 patients with inflammatory bowel diseases recruited in three years) and promotes new collaborative and synergistic interactions between basic researchers and clinicians. The DDRCC Clinical Component and Research Core facilities are integrated within the framework of the Clinical Translational Science Award - sponsored biomedical informatics infrastructure. By collecting clinical samples and linking them to integrated clinical information collected in focused longitudinal studies and research data generated from these samples by the DDRCC Research Core Facilities, the DDRCC is building a comprehensive multidimensional discovery platform from which investigators can launch further hypothesis-driven studies on inflammatory bowel disease pathogenesis.

Public Health Relevance

The Digestive Diseases Research Core Center at Washington University -St. Louis serves as a central institutional resource for investigators interested in research on inflammatory bowel diseases. It provides services and pools resources to help researchers address questions on how inflammatory bowel diseases arise and how we can treat these diseases

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK052574-15
Application #
8574503
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Program Officer
Podskalny, Judith M,
Project Start
2000-03-01
Project End
2014-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
15
Fiscal Year
2014
Total Cost
$1,009,379
Indirect Cost
$345,314
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Brenot, Audrey; Knolhoff, Brett L; DeNardo, David G et al. (2018) SNAIL1 action in tumor cells influences macrophage polarization and metastasis in breast cancer through altered GM-CSF secretion. Oncogenesis 7:32
Luo, Jialie; Feng, Jing; Yu, Guang et al. (2018) Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J Allergy Clin Immunol 141:608-619.e7
Tarr, Gillian A M; Oltean, Hanna N; Phipps, Amanda I et al. (2018) Strength of the association between antibiotic use and hemolytic uremic syndrome following Escherichia coli O157:H7 infection varies with case definition. Int J Med Microbiol 308:921-926
Baumann-Dudenhoeffer, Aimee M; D'Souza, Alaric W; Tarr, Phillip I et al. (2018) Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med 24:1822-1829
Kumar, Pardeep; Kuhlmann, F Matthew; Chakraborty, Subhra et al. (2018) Enterotoxigenic Escherichia coli-blood group A interactions intensify diarrheal severity. J Clin Invest 128:3298-3311
Smith, Gordon I; Commean, Paul K; Reeds, Dominic N et al. (2018) Effect of Protein Supplementation During Diet-Induced Weight Loss on Muscle Mass and Strength: A Randomized Controlled Study. Obesity (Silver Spring) 26:854-861
Bockerstett, Kevin A; Wong, Chun Fung; Koehm, Sherri et al. (2018) Molecular Characterization of Gastric Epithelial Cells Using Flow Cytometry. Int J Mol Sci 19:
Porter, Lane C; Franczyk, Michael P; Pietka, Terri et al. (2018) NAD+-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab 315:E520-E530
Rubin, Deborah C (2018) CFTR and the Regulation of Crypt Cell Proliferation. Cell Mol Gastroenterol Hepatol 5:418-419
Hoshi, Masato; Reginensi, Antoine; Joens, Matthew S et al. (2018) Reciprocal Spatiotemporally Controlled Apoptosis Regulates Wolffian Duct Cloaca Fusion. J Am Soc Nephrol 29:775-783

Showing the most recent 10 out of 899 publications