Autosomal recessive limb-girdle muscular dystrophy (AR-LGMD) refers to a number of genetically and clinically heterogenous neuromuscular disorders that affect mainly skeletal muscle. Over the last few years, it has become clear that a number of genes encoding protein components of the sarcoglycan complex are responsible for several forms of AR-LGMDs. The sarcoglycans are expressed at the sarcolemma of muscle fibers and, along with other proteins, constitute the dystrophin-glycoprotein complex (DGC). These proteins are believed to play a role in maintaining the normal architecture of the muscle cell membrane by constituting a link between the subsarcolemmal cytoskeleton and the extracellular matrix. In particular, we have shown that alpha-sarcoglycan, a 50 kDa component of the DGC, is a deficient in skeletal muscle from patients having limb- girdle muscular dystrophy type 2D, and that the expression of all the other sarcoglycan proteins is also strongly reduced in muscle from these patients. Although these findings constitute great progress in our understanding of the genetic basis for AR-LGMDs, there have been no improvements in the treatment of these invalidating diseases. The long-term goal of this research proposal is the development of a gene transfer strategy for AR-LGMDs. We recently generated an animal model for LGMD2D by disrupting the alpha-sarcoglycan gene in mice and preliminary analyses of homozygous mutant mice indicate that their skeletal muscle displays a dystrophic phenotype, as expected, thus providing a valuable animal mode for LGMD2D. The overall objective of this pilot project is to develop a virally-mediated gene transfer of alpha-sarcoglycan and to investigate its therapeutic potential in alpha-sarcoglycan deficient mice.
Our first aim will be the construction of recombinant adenovirus and adeno-associated virus vectors containing the human alpha-sarcoglycan deficient mice.
Our first aim will be the construction of recombinant adenovirus and adeno-associated virus vectors containing the human alpha- sarcoglycan cDNA. These vectors will first be tested for their ability to induce expression of alpha-sarcoglycan, both in cultured myoblasts and myotubes. We will then proceed to in vivo experiments designed to test the following hypotheses: i) direct intra-muscular injections of adenoviral- based vectors containing the alpha-sarcoglycan cDNA will efficiently allow expression of the protein and restoration of the DGC in of skeletal muscle of mutant mice (Aim 2) and ii) gene transfer of alpha-sarcoglycan will support functional restoration of muscle fibers in these mice (Aim 3). Overall, the experiments outlined in our proposal will yield new information about alpha-sarcoglycan and the potential for virally-mediated alpha-sarcoglycan gene transfer in mutant mice. In addition, our findings should constitute a foundation for future investigations directed towards developing gene therapy for LGMD2D patients.

Project Start
1999-09-01
Project End
2000-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
2
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
041294109
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai et al. (2018) Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short-Acting ?-Agonist Formulations. J Clin Pharmacol 58:457-465
Lynch, Thomas J; Ahlers, Bethany A; Parekh, Kalpaj R (2018) Lung transplantation: chronic rejection and stem cell depletion. J Thorac Dis 10:E666-E668
Apicella, Michael A; Coffin, Jeremy; Ketterer, Margaret et al. (2018) Nontypeable Haemophilus influenzae Lipooligosaccharide Expresses a Terminal Ketodeoxyoctanoate In Vivo, Which Can Be Used as a Target for Bactericidal Antibody. MBio 9:
Moheet, Amir; Ode, Katie Larson (2018) Hypoglycaemia in patients with cystic fibrosis- harbinger of poor outcomes or innocent bystander? J Cyst Fibros 17:428-429
Norris, Andrew W (2018) Is Cystic Fibrosis Related Diabetes Reversible? New Data on CFTR Potentiation and Insulin Secretion. Am J Respir Crit Care Med :
Metwali, Ahmed; Thorne, Peter S; Ince, M Nedim et al. (2018) Recirculating Immunocompetent Cells in Colitic Mice Intensify Their Lung Response to Bacterial Endotoxin. Dig Dis Sci 63:2930-2939
Janssen, Kayley H; Diaz, Manisha R; Gode, Cindy J et al. (2018) RsmV, a Small Noncoding Regulatory RNA in Pseudomonas aeruginosa That Sequesters RsmA and RsmF from Target mRNAs. J Bacteriol 200:
Li, Xingnan; Ortega, Victor E; Ampleford, Elizabeth J et al. (2018) Genome-wide association study of lung function and clinical implication in heavy smokers. BMC Med Genet 19:134
Kroken, Abby R; Chen, Camille K; Evans, David J et al. (2018) The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression. MBio 9:
Haghighi, Babak; D Ellingwood, Nathan; Yin, Youbing et al. (2018) A GPU-based symmetric non-rigid image registration method in human lung. Med Biol Eng Comput 56:355-371

Showing the most recent 10 out of 669 publications