The Vector Core at the University of Iowa is integrated into multiple gene therapy projects directed at the study of the long, eye, brain, liver, heart, muscle, and the cardiovascular and neuromuscular systems. Core staff are active participants in the development of gene transfer technologies in the Cardiovascular, Macular Degeneration, and CF Centers. The interaction with multiple investigators from various disciplines allows for cross-fertilization of ideas, technical advancements, and innovations in vector designs. The Vector Core Facility's overall objective is to support investigators in the use of gene transfer technologies. This includes consultation with the PI, development of novel vectors, collaborative testing of vectors generated for function and purity, and finally routine preparation. The core staff and investigators are in close contact through all phases of vector design and generation Thus, the core serves as both a research and development facility for gene transfer studies, and a service facility for routine vector preparations. As a part of the service the Vector Core will provide purified and concentrated preparations of recombinant adenovirus, adeno-associated virus (AAV), and retrovirus. This facility will also provide access to a large number of standard cell lines, expression plasmids, and stocks of recombinant reporter viruses. The main responsibilities of the Core will be: . Prepare recombinant vectors. . Fluorescent or radioactive labeling of virus. . Quality control, test all viruses for helper virus and titer. . Vector dissemination. . Maintain a database of vector stocks available for use. . Catalogue plasmid database of expression vectors; develop new expression vectors as needed. . Develop novel methods for virus production. . Assist in the design and development of novel vectors.

Project Start
2001-09-01
Project End
2002-08-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
4
Fiscal Year
2001
Total Cost
$296,752
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
041294109
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Vargas Buonfiglio, Luis G; Borcherding, Jennifer A; Frommelt, Mark et al. (2018) Airway surface liquid from smokers promotes bacterial growth and biofilm formation via iron-lactoferrin imbalance. Respir Res 19:42
Fricke, Erin M; Elgin, Timothy G; Gong, Huiyu et al. (2018) Lipopolysaccharide-induced maternal inflammation induces direct placental injury without alteration in placental blood flow and induces a secondary fetal intestinal injury that persists into adulthood. Am J Reprod Immunol 79:e12816
Mao, Suifang; Shah, Alok S; Moninger, Thomas O et al. (2018) Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling. Proc Natl Acad Sci U S A 115:1370-1375
Dunican, Eleanor M; Elicker, Brett M; Gierada, David S et al. (2018) Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128:997-1009
Liu, Chia-Ying; Parikh, Megha; Bluemke, David A et al. (2018) Pulmonary artery stiffness in chronic obstructive pulmonary disease (COPD) and emphysema: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study. J Magn Reson Imaging 47:262-271
Bodduluri, Sandeep; Reinhardt, Joseph M; Hoffman, Eric A et al. (2018) Recent Advances in Computed Tomography Imaging in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 15:281-289
Xie, Yuliang; Ostedgaard, Lynda; Abou Alaiwa, Mahmoud H et al. (2018) Mucociliary Transport in Healthy and Cystic Fibrosis Pig Airways. Ann Am Thorac Soc 15:S171-S176
Yan, Ziying; Zou, Wei; Feng, Zehua et al. (2018) Establishment of a High Yield rAAV/HBoV Vector Production System Independent of Bocavirus Non-structural Proteins. Hum Gene Ther :
Taher, Hisham; Bauer, Christian; Abston, Eric et al. (2018) Chest wall strapping increases expiratory airflow and detectable airway segments in computer tomographic scans of normal and obstructed lungs. J Appl Physiol (1985) 124:1186-1193
Luehrs, Rachel E; Newell Jr, John D; Comellas, Alejandro P et al. (2018) CT-Measured Lung Air-Trapping is Associated with Higher Carotid Artery Stiffness in Individuals with Chronic Obstructive Pulmonary Disease. J Appl Physiol (1985) :

Showing the most recent 10 out of 669 publications