Overview: This application seeks continued funding for the Washington University School of Medicine (WUSM) Nutrition Obesity Research Center (NORC). Since our NORC was first funded in 1999, it has served as a nidus for the growth and development of nutrition and obesity research at WUSM. The infrastructure provided by the NORC has created an environment that supports and stimulates cost-effective and high-quality research, collaborations between investigators, career development and training, and clinical activities in nutrition and obesity. Our NORC has a talented and diverse research base consisting of 109 investigators from 19 departments. These investigators have 179 nutrition/obesity-related grants, generating $42 million/year in direct costs. It is our intention o continue to grow nutrition and obesity-related activities, and to continue to bring state-of-the-ar basic and clinical research methods to NORC investigators. The overall research focus of the WUSM NORC has been: 1) Obesity: Pathophysiology, Complications and Therapeutics; 2) Nutrient Metabolism in Health and Disease; and 3) Growth, Development, and Aging. Newly emerging areas of major interest include: 4) Gut Microbiome and 5) Community Health. We propose an Administrative Core and 4 Biomedical Research Cores. The Clinical Science Research Core will provide assistance with: i) subject recruitment, design and performance of complex metabolic studies, ii) body composition assessments, iii) mixing of intravenous tracers and hormone solutions, iv) acquisition of tissue (adipose, muscle, intestine) samples, v) exercise (endurance and strength) and physical performance testing, vi) lifestyle (diet manipulation, weight loss and exercise) interventions, vii) ingestive behavior (taste perception and preference) testing, viii) cardiovascular assessments (e.g., echocardiography, endothelial function, carotid intima-media thickness); ix) measurement of stable isotope enrichment of metabolic substrates in blood and tissue samples, and x) mathematical modeling of tracer and non-tracer data to assess metabolic kinetics and -cell function. The Animal Model Research Core will provide services to investigators using murine models relevant to nutrition, including: i maintaining breeding colonies of genetically modified mice, ii) training in breeding and animal husbandry, iii) biochemical and molecular analyses of blood and tissue samples, iii) body composition analyses, iv) genotyping, and v) metabolic phenotyping. The Biomolecular Analyses Core will provide services to permit structural identification and quantitation of nutrition-related biomolecules in blood and tissue samples. The Adipocyte Biology and Molecular Nutrition Core will provide adipose tissue morphology, adipocyte and muscle cell lines for culture, gene and protein expression, mitochondrial physiology, and training in specialized research techniques. The collaborative and synergistic relationships among our NORC research base and our four Core laboratories will be formalized by promoting team science to further encourage interdisciplinary approaches to address important issues in nutrition and obesity. In addition, the NORC will fund 4 Pilot & Feasibility Awards/year to junior faculty and help mentor them.

Public Health Relevance

Overview: Obesity and its complications and nutrition-related diseases are a major public health problem because of their high prevalence, effect on quality-of-life and economic impact. The NORC will help reduce this burden by enhancing and stimulating cost-effective research in nutrition and obesity that will ultimately lead to improved clinical therapies and effective community interventions

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK056341-20
Application #
9926245
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Evans, Mary
Project Start
1999-09-30
Project End
2021-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
20
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Shepherd, Andrew J; Copits, Bryan A; Mickle, Aaron D et al. (2018) Angiotensin II Triggers Peripheral Macrophage-to-Sensory Neuron Redox Crosstalk to Elicit Pain. J Neurosci 38:7032-7057
Cifarelli, Vincenza; Abumrad, Nada A (2018) Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Compr Physiol 8:493-507
Smith, Gordon I; Commean, Paul K; Reeds, Dominic N et al. (2018) Effect of Protein Supplementation During Diet-Induced Weight Loss on Muscle Mass and Strength: A Randomized Controlled Study. Obesity (Silver Spring) 26:854-861
Perry, Justin S A; Russler-Germain, Emilie V; Zhou, You W et al. (2018) Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity 48:1271
Turecamo, S E; Walji, T A; Broekelmann, T J et al. (2018) Contribution of metabolic disease to bone fragility in MAGP1-deficient mice. Matrix Biol 67:1-14
Samovski, Dmitri; Dhule, Pallavi; Pietka, Terri et al. (2018) Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling. Diabetes 67:1272-1284
Porter, Lane C; Franczyk, Michael P; Pietka, Terri et al. (2018) NAD+-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab 315:E520-E530
Acevedo, María Belén; Eagon, J Christopher; Bartholow, Bruce D et al. (2018) Sleeve gastrectomy surgery: when 2 alcoholic drinks are converted to 4. Surg Obes Relat Dis 14:277-283
Mikhalkova, Deana; Holman, Sujata R; Jiang, Hui et al. (2018) Bariatric Surgery-Induced Cardiac and Lipidomic Changes in Obesity-Related Heart Failure with Preserved Ejection Fraction. Obesity (Silver Spring) 26:284-290
Henson, William R; Hsu, Fong-Fu; Dantas, Gautam et al. (2018) Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion. Biotechnol Biofuels 11:339

Showing the most recent 10 out of 1334 publications