The Cell Biology/Morphology Core provides individual investigators with technical support, equipment, and expertise for cell biological, morphological and immunocytochemical studies related to the mission of the BADERC grant. The expertise of the PI and his colleagues spans a wide range of imaging procedures, from basic and confocal light/fluorescence microscopic analysis of antigen localization, to high resolution electron microscopy and immunogold labeling on ultrathin frozen sections of cells and tissues, and quantitative live cell imaging and ratiometric imaging. The Core will, as a major objective, provide an environment appropriate for the training of key personnel from participating laboratories. The rationale for the Core lies in the necessity to provide an integrated approach to problems in Diabetes and other designated research areas, in an era when no single laboratory can develop the highest level of technical competence in several important and specialized areas. In addition, the Cell Biology Core is designed to maximize the use and availability of several specialized items of equipment, that are not only prohibitively expensive for many laboratories, but that also require expensive and regular maintenance. The techniques offered by the Core require a high level of sophisticated technology that is constantly being updated to maintain state-of-the-art performance. Thus, investigators are able to explore the use of a varied and constantly expanding arsenal of methods in order to achieve success in their studies. These procedures are an essential part of the modern multidisciplinary approach to cell biological questions as they relate to Diabetes and Endocrinology.

Public Health Relevance

This Core facility provides access to spohisticated equipment that is necessary to help individual labs and investigators pursue their work on studies related to diabetes and endocrinology. The large and expensive microscopy equipment is largely beyond the budget and expertize of individual investigstors to purchase and maintain and this Core, therefore, provides a valuable and unique resource to the BADERC community.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK057521-13
Application #
8378797
Study Section
Special Emphasis Panel (ZDK1-GRB-2)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
13
Fiscal Year
2012
Total Cost
$197,813
Indirect Cost
$84,765
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Cox, Kimberly H; Oliveira, Luciana M B; Plummer, Lacey et al. (2018) Modeling mutant/wild-type interactions to ascertain pathogenicity of PROKR2 missense variants in patients with isolated GnRH deficiency. Hum Mol Genet 27:338-350
Aguayo-Mazzucato, Cristina; Bonner-Weir, Susan (2018) Pancreatic ? Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab 27:57-67
McKeown, Nicola M; Dashti, Hassan S; Ma, Jiantao et al. (2018) Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: a meta-analysis. Diabetologia 61:317-330
Vandoorne, Katrien; Rohde, David; Kim, Hye-Yeong et al. (2018) Imaging the Vascular Bone Marrow Niche During Inflammatory Stress. Circ Res 123:415-427
Ross, Rachel A; Leon, Silvia; Madara, Joseph C et al. (2018) PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. Elife 7:
Berkowitz, Seth A; Karter, Andrew J; Corbie-Smith, Giselle et al. (2018) Food Insecurity, Food ""Deserts,"" and Glycemic Control in Patients With Diabetes: A Longitudinal Analysis. Diabetes Care 41:1188-1195
Syed, Ismail; Lee, Jennifer; Moraes-Vieira, Pedro M et al. (2018) Palmitic Acid Hydroxystearic Acids Activate GPR40, Which Is Involved in Their Beneficial Effects on Glucose Homeostasis. Cell Metab 27:419-427.e4
Vujic, Ana; Lerchenmüller, Carolin; Wu, Ting-Di et al. (2018) Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun 9:1659
Fulzele, Keertik; Dedic, Christopher; Lai, Forest et al. (2018) Loss of Gs? in osteocytes leads to osteopenia due to sclerostin induced suppression of osteoblast activity. Bone 117:138-148
Battistone, Maria A; Nair, Anil V; Barton, Claire R et al. (2018) Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 29:545-556

Showing the most recent 10 out of 389 publications