The Bioanalytical/Mass Spectrometry/Proteomic Core (MS/Proteomics Core) provides cost-effective, state of-the-art instrumentation and expertise to investigators in the Vanderbilt Digestive Disease Research Center (VDDRC). This core is among the specialized service cores utilizing the technical personnel and instrument facilities located in the Vanderbilt Mass Spectrometry Research Center (MSRC). This core will be used for identification and quantitation of small molecule metabolites and identification and characterization of proteins. Forty six (46) VDDRC investigators have used the core extensively during the previous five years for digestive disease related projects, such as assistance in developing analytical methods or experimental design, performing analysis of complex protein samples. The core develops standard operating procedures, and maintains quality control (QC) records on particular assays, instrument performance, and maintenance history. Core personnel perform assays for investigators and train students and fellows in the theoretical and practical aspects of MS. The MS Core component is run as an open-access facility in which users generally prepare their samples and operate the instruments if they so desire. Proteomics samples are submitted to the core for analysis by proteomics staff after consultations between the investigator and core staff have determined the most appropriate class of analytical service. Personnel handle all aspects of sample processing, analysis, and data reporting of samples submitted for proteomics analysis. Administrative staff monitors the use of the instrument facilities by investigators and prepare reports on utilization for use by the Administrative Core. The MSRC cores have 18 mass spectrometers available to users, in addition to specialized facilities for 2D-differential gel electrophoresis and gel imaging.
The Specific Aims of the Core are to: 1) provide high-quality GC/MS, tandem LC/MS, and MALDI/TOF mass spectrometry services for analysis of small molecule metabolites; 2) provide proteomics services for identification and characterization of individual proteins and more complex tissue-specific proteomes; (3) provide analytical expertise in mass spectrometry for assay development and validation; 4) assist users with data analysis; and 5) provide advanced training in biomedical mass spectrometry and proteomics to students and fellows. The goal of the Core is to enhance investigator abilities to prevent, diagnose or treat human digestive disease-related disorders.

Public Health Relevance

Mass spectrometry is a powerful technique for detection, identification and quantitation of biomolecules that are characteristic of digestive disease processes. The MS/Proteomics Core provides a wide range of advanced analytical instrumentation and technical expertise for research investigators who are members of the Vanderbilt Digestive Disease Research Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
6P30DK058404-15
Application #
9070601
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
15
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
Hebron, Katie E; Li, Elizabeth Y; Arnold Egloff, Shanna A et al. (2018) Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis. Sci Rep 8:3208
Pollins, Alonda C; Boyer, Richard B; Nussenbaum, Marlieke et al. (2018) Comparing Processed Nerve Allografts and Assessing Their Capacity to Retain and Release Nerve Growth Factor. Ann Plast Surg 81:198-202
Ruiz, Rachel M; Sommer, Evan C; Tracy, Dustin et al. (2018) Novel patterns of physical activity in a large sample of preschool-aged children. BMC Public Health 18:242
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Loh, John T; Beckett, Amber C; Scholz, Matthew B et al. (2018) High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 86:
Bolus, W Reid; Peterson, Kristin R; Hubler, Merla J et al. (2018) Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab 8:86-95
Kroh, Heather K; Chandrasekaran, Ramyavardhanee; Zhang, Zhifen et al. (2018) A neutralizing antibody that blocks delivery of the enzymatic cargo of Clostridium difficile toxin TcdB into host cells. J Biol Chem 293:941-952
Noto, Jennifer M; Chopra, Abha; Loh, John T et al. (2018) Pan-genomic analyses identify key Helicobacter pylori pathogenic loci modified by carcinogenic host microenvironments. Gut 67:1793-1804
Kohl, Kevin D; Dearing, M Denise; Bordenstein, Seth R (2018) Microbial communities exhibit host species distinguishability and phylosymbiosis along the length of the gastrointestinal tract. Mol Ecol 27:1874-1883
Kook, Seunghyi; Qi, Aidong; Wang, Ping et al. (2018) Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 58:566-574

Showing the most recent 10 out of 1365 publications