It is clear that the progress of diabetes research during the coming decade will depend heavily upon the ability to ufilize the mouse as an experimental model to invesfigate both basic and clinically relevant quesfions in diabetes research. The Transgenic and Knock-out Mouse Core (TKMC, Core A) provides invesfigators at UCLA, UCSD, the Salk Institute, and Cedars-Sinai with a wide array of genefic manipulafions in the mouse including transgenic genes, homologous recombinafion in embryonic stem cells (ES cells), creation of chimeric mice from ES cells, and the most cutting-edge approaches to performing reverse genefics in the mouse. Transgenic, knock-out and knock-in mouse models are created that utilize the most advanced approaches including condifional Tet-inducible and tamoxifen-inducible transgenes, fissue-specific and condifional knock-outs using Cre-LoxP and Flp recombinases and recombinafion-mediated cassette exchange (RMCE), BAC transgenics, BAC-Trap, RiboTag, and other specialized technologies. This Core is an outstanding example of how extraordinarily specialized techniques, highly trained dedicated personnel, specially constructed facilities, and expensive equipment can be accessed by researchers who could not reasonably expect to develop them on an individual basis. Key objectives are: 1. To create innovative and important mouse models for studies of diabetes and its complicafions 2. To eliminate barriers to the most cutfing-edge mouse genefic approaches for the DERC membership 3. To provide outstanding, reliable, and high quality mouse embryology and genefic services 4. To advance the technology of genefic manipulafion of the mouse genome The availability of this Transgenic and Knock-out Mouse Core in coordinafion with the Metabolic and Molecular Physiology Core, the Genomics and Epigenefics Core, and the Novel Target idenfificafion and Assay Development Core, will enable our members to conduct versafile, cutting-edge, reverse genefic research in the mouse with a battery of multidisciplinary, state-of-the-art techniques.

Public Health Relevance

This Core provides services allowing the creation of sophisticated mouse models for the DRC Membership to address the mechanisms of diabetes and other endocrine diseases. The strong conservation between the genomes of humans and mice makes the approach of using transgenic and knock-out mouse technology to create models for human diabetes, endocrine pathologies, and diabetes complications extremely useful.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK063491-12
Application #
8641339
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
12
Fiscal Year
2014
Total Cost
$225,172
Indirect Cost
$81,671
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Adams, Elizabeth; Genter, Pauline; Keefe, Emma et al. (2018) The GLP-1 response to glucose does not mediate beta and alpha cell dysfunction in Hispanics with abnormal glucose metabolism. Diabetes Res Clin Pract 135:185-191
Petcherski, Anton; Trudeau, Kyle M; Wolf, Dane M et al. (2018) Elamipretide Promotes Mitophagosome Formation and Prevents Its Reduction Induced by Nutrient Excess in INS1 ?-cells. J Mol Biol 430:4823-4833
Sung, Yun J (see original citation for additional authors) (2018) A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. Am J Hum Genet 102:375-400
Liesa, Marc; Shirihai, Orian S (2018) Mitochondrial adaptation in obesity is a ClpPicated business. EMBO Rep 19:
Wan, Ma; Bennett, Brian D; Pittman, Gary S et al. (2018) Identification of Smoking-Associated Differentially Methylated Regions Using Reduced Representation Bisulfite Sequencing and Cell type-Specific Enhancer Activation and Gene Expression. Environ Health Perspect 126:047015
Leary, Peter J; Kronmal, Richard A; Bluemke, David A et al. (2018) Histamine H2 Receptor Polymorphisms, Myocardial Transcripts, and Heart Failure (from the Multi-Ethnic Study of Atherosclerosis and Beta-Blocker Effect on Remodeling and Gene Expression Trial). Am J Cardiol 121:256-261
Guo, Y; Moon, J-Y; Laurie, C C et al. (2018) Genetic predisposition to obesity is associated with asthma in US Hispanics/Latinos: Results from the Hispanic Community Health Study/Study of Latinos. Allergy 73:1547-1550
Hoeksema, Marten A; Glass, Christopher K (2018) Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis :
Emdin, Connor A; Khera, Amit V; Chaffin, Mark et al. (2018) Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nat Commun 9:1613

Showing the most recent 10 out of 926 publications