The overall mission of the UCSD/UCLA DRC centers on fostering research in the prevention and treatment of diabetes and its complications to ultimately improve the lives of patients. For the past 17 years, our DRC has uniquely linked together the diabetes/metabolism activities of two major universities within the UC system. Thus, we have been able harness the collective energy and scientific excitement at UCSD, UCLA and affiliated institutions, which together comprise the major proportion of research in diabetes/metabolism in Southern California. The DRC has fostered new collaborations and interactions between outstanding scientists within and across these institutions, and has played an important role in promoting the careers of young scientists as they move on to the status of independent investigators. Our research base faculty membership now includes 120 outstanding scientists who have been exceptionally successful, as judged by the numerous publications in high impact journals and the generous peer review grant support that they have accrued. The administrative component is the organizing force behind the DRC, and provides leadership for all of the Cores and Programs. The overall objective of the Administrative Core is to ensure smooth and efficient operation of all DRC components, to allow optimal interaction with DRC faculty members and between the various Cores and Committees to promote and enhance diabetes/metabolism research. The Administrative Core is responsible for fund and budgetary management, communications, academic enrichment and planning and organization for DRC activities. The Administrative Core also prepares progress reports and renewal applications, coordinates all committee business and provides general administrative assistance to the various elements of the program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK063491-18
Application #
9961909
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Zhao, Peng; Wong, Kai In; Sun, Xiaoli et al. (2018) TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell 172:731-743.e12
Prokopenko, Dmitry; Sakornsakolpat, Phuwanat; Fier, Heide Loehlein et al. (2018) Whole-Genome Sequencing in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 59:614-622
Raffield, Laura M; Ellis, Jaclyn; Olson, Nels C et al. (2018) Genome-wide association study of homocysteine in African Americans from the Jackson Heart Study, the Multi-Ethnic Study of Atherosclerosis, and the Coronary Artery Risk in Young Adults study. J Hum Genet 63:327-337
Tanphaichitr, Nongnuj; Kongmanas, Kessiri; Faull, Kym F et al. (2018) Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog Lipid Res 72:18-41
Pappas, D J; Lizee, A; Paunic, V et al. (2018) Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest. Pharmacogenomics J 18:367-376
Cardamone, Maria Dafne; Tanasa, Bogdan; Cederquist, Carly T et al. (2018) Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. Mol Cell 69:757-772.e7
Floyd, J S; Sitlani, C M; Avery, C L et al. (2018) Large-scale pharmacogenomic study of sulfonylureas and the QT, JT and QRS intervals: CHARGE Pharmacogenomics Working Group. Pharmacogenomics J 18:127-135
Muse, Evan D; Yu, Shan; Edillor, Chantle R et al. (2018) Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc Natl Acad Sci U S A 115:E4680-E4689
Hajek, Catherine; Guo, Xiuqing; Yao, Jie et al. (2018) Coronary Heart Disease Genetic Risk Score Predicts Cardiovascular Disease Risk in Men, Not Women. Circ Genom Precis Med 11:e002324
Mahajan, Anubha (see original citation for additional authors) (2018) Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet 50:559-571

Showing the most recent 10 out of 926 publications