NIH-initiated efforts to centralize expertise, instrumentation, and facilities to promote comprehensive evaluation of genetically engineered mice, tissues and cells has improved our understanding of functional genomics and disease pathobiology. The Metabolic and Molecular Physiology Core (MMPC) provides investigators at UCSD, UCLA, and their affiliated institutions with a series of state-of-the-art and cost effective molecular and physiological assays not readily available from national phenotyping centers. The MMPC is divided into four sub-cores: A) Insulin sensitivity and metabolic homeostasis, B) Oxidative metabolism in animals and tissues, C) Mitochondrial biology and metabolism in cells, and D) Inflammatory signaling and diabetes complications, and each sub-core offers extensive training and consultation on a variety of topics from experimental design to data interpretation and integration. Specifically, the MMPC provides services to assess: movement, feeding behavior, indirect calorimetry, body composition, glucose/insulin tolerance, insulin action (ex vivo, in situ, and in vivo), substrate metabolism and oxidative capacity, mitochondrial function and morphology, circulating hormones / adipokines / cytokines, and diabetes complications. The MMPC maintains a tissue bio-bank as well as a comprehensive database of phenotypic outcomes for a wide variety of genetically engineered mice and standard protocols for a vast number of phenotyping techniques. The MMPC leadership includes top investigators from the fields of integrative metabolism, nuclear receptor biology, mitochondrial function and architecture, and inflammation including: Andrea Hevener, Orian Shirihai, Peter Tontonoz, and Karen Reue. Strengths of the MMPC include the well-rounded and complementary expertise of its leadership, an exceptional track record of research productivity, and high impact scientific publications. The collaborative spirit of the MMPC team fosters a collegial environment and supports service well- coordinated with other DRC cores and institutional resources. The central goal of the MMPC is to advance the scientific capabilities of the DRC membership in leading-edge metabolic analyses and improve overall research quality with enhanced translation of research ideas from cells, tissues, and mice to (wo)man.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK063491-18
Application #
9961913
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Keaton, Jacob M; Gao, Chuan; Guan, Meijian et al. (2018) Genome-wide interaction with the insulin secretion locus MTNR1B reveals CMIP as a novel type 2 diabetes susceptibility gene in African Americans. Genet Epidemiol 42:559-570
Skorobogatko, Yuliya; Dragan, Morgan; Cordon, Claudia et al. (2018) RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proc Natl Acad Sci U S A 115:7819-7824
Jiang, Xia; O'Reilly, Paul F; Aschard, Hugues et al. (2018) Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun 9:260
Savji, Nazir; Meijers, Wouter C; Bartz, Traci M et al. (2018) The Association of Obesity and Cardiometabolic Traits With Incident HFpEF and HFrEF. JACC Heart Fail 6:701-709
Haljas, Kadri; Amare, Azmeraw T; Alizadeh, Behrooz Z et al. (2018) Bivariate Genome-Wide Association Study of Depressive Symptoms With Type 2 Diabetes and Quantitative Glycemic Traits. Psychosom Med 80:242-251
Balakrishnan, Poojitha; Jones, Miranda R; Vaidya, Dhananjay et al. (2018) Ethnic, Geographic, and Genetic Differences in Arsenic Metabolism at Low Arsenic Exposure: A Preliminary Analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). Int J Environ Res Public Health 15:
Smith, Caren E; Follis, Jack L; Dashti, Hassan S et al. (2018) Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent. Mol Nutr Food Res 62:
Irvin, Marguerite R; Sitlani, Colleen M; Noordam, Raymond et al. (2018) Genome-wide meta-analysis of SNP-by9-ACEI/ARB and SNP-by-thiazide diuretic and effect on serum potassium in cohorts of European and African ancestry. Pharmacogenomics J :
Gao, Chuan; Langefeld, Carl D; Ziegler, Julie T et al. (2018) Genome-Wide Study of Subcutaneous and Visceral Adipose Tissue Reveals Novel Sex-Specific Adiposity Loci in Mexican Americans. Obesity (Silver Spring) 26:202-212
Link, Verena M; Duttke, Sascha H; Chun, Hyun B et al. (2018) Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function. Cell 173:1796-1809.e17

Showing the most recent 10 out of 926 publications