The Cystic Fibrosis Research Center at the University of Pittsburgh currently has 55 members in eight departments and garners nearly $10 M in external grants and contracts to support its CF research efforts. These are focused in three major areas: The Center has a strong basic science component that addresses the Cell and Molecular Biology of CF, and is supported by NIH, NSF and Cystic Fibrosis Foundation (CFF) grants. Investigators in this group make extensive use of differentiated, primary human bronchial epithelia (HBE) for their work. They employ the methods of biochemistry, molecular biology, cell biology and electrophysiology to study CFTR and ENaC functions in epithelial membranes, how these pathways contribute to normal airway function, how they are trafficked between various compartments of the protein secretory and recycling pathways, and how pharmacological manipulation of channel biogenesis (correction) or channel activity (potentiation) influence HBE function. Studies of Lung Infection and Inflammation focus on the pulmonary inflammatory response to bacterial infection in HBE and animal models. These studies aim to improve our understanding of CF disease pathogenesis, define bio-markers for clinical trials, and identify targets for anti-inflammatory therapy. The Clinical Studies group translates basic findings into new therapies. It develops and evaluates methods to improve airway drug delivery and isotopic clearance assays that assess transmural airway liquid movements in vivo, to test therapeutics that target the core defect in CF. The proposed Research and Translational Core Center will be directed by Dr. Raymond Frizzell while Dr. Joseph Pilewski will serve as Associate Director. The Center is comprised of three scientific cores: Human Airway Cell and Assays (Frizzell, PI), Clinical Studies/Outcomes (Pilewski, PI), and Imaging (Watkins, PI). The Core Center will operate a Pilot and Feasibility Program to bring new investigators into CF research. This Center emphasizes the translation of basic knowledge into applied therapeutics.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-W (M2))
Program Officer
Mckeon, Catherine T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Caves, Elizabeth A; Cook, Sarah A; Lee, Nara et al. (2018) Air-Liquid Interface Method To Study Epstein-Barr Virus Pathogenesis in Nasopharyngeal Epithelial Cells. mSphere 3:
Perkins, Lydia A; Fisher, Gregory W; Naganbabu, Matharishwan et al. (2018) High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue. Mol Pharm 15:759-767
Qu, Yanyan; Olonisakin, Tolani; Bain, William et al. (2018) Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight 3:
Tyurina, Yulia Y; Shrivastava, Indira; Tyurin, Vladimir A et al. (2018) ""Only a Life Lived for Others Is Worth Living"": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 29:1333-1358
Lennox, Alison T; Coburn, Stefanie L; Leech, John A et al. (2018) ATP12A promotes mucus dysfunction during Type 2 airway inflammation. Sci Rep 8:2109
Pradhan-Sundd, Tirthadipa; Zhou, Lili; Vats, Ravi et al. (2018) Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology 67:2320-2337
Wen, Xiaoyan; Cui, Liyan; Morrisroe, Seth et al. (2018) A zebrafish model of infection-associated acute kidney injury. Am J Physiol Renal Physiol 315:F291-F299
Preston, G Michael; Guerriero, Christopher J; Metzger, Meredith B et al. (2018) Substrate Insolubility Dictates Hsp104-Dependent Endoplasmic-Reticulum-Associated Degradation. Mol Cell 70:242-253.e6
Woodcock, Chen-Shan Chen; Huang, Yi; Woodcock, Steven R et al. (2018) Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth. J Biol Chem 293:1120-1137
Sannino, Sara; Guerriero, Christopher J; Sabnis, Amit J et al. (2018) Compensatory increases of select proteostasis networks after Hsp70 inhibition in cancer cells. J Cell Sci 131:

Showing the most recent 10 out of 146 publications