The Single Nephron and Metabolomics Core will provide an important national resource for investigators who wish to define the expression, localization and functional characteristics of transport and other relevant proteins in single nephron tubules or defined renal epithelial cells. Moreover, metabolomics services will be available to measure changes in levels of small molecules involved in regulating nephron function. It is expected that the data generated from this Core will be complemented by analyses performed in other Center Cores, such as the Cellular Physiology and Kidney Imaging Cores. The Single Nephron and Metabolomics Core aims to offer an integrated approach including functional (including in vitro microperfusion of isolated segments, measurements of transepithelial ion/solute fluxes, fluorescence functional imaging of single tubular cells), biochemical (microassays of enzyme/transporter activity), molecular (single tubule quantitative PCR and immunoblotting), and analytical (renal metabolomics) strategies applied to microdissected tubules to address relevant questions proposed by users. Furthermore the Core will provide expertise in design and implementation of single nephron/cell studies and instruction in the technical aspects of all services offered by the Core. The specific objectives of the Core are to: (1) provide microdissected tubules for quantification of mRNA abundance (real time PCR) and protein expression (immunoblotting), immunolocalization, and enzyme/transporter microassays;(2) perform functional fluorescence assays of channel/transporter function in isolated tubules microperfused in vitro;(3) perform measurements of transepithelial ion/solute fluxes across isolated tubules microperfused in vitro;(4) quantify mRNA and protein abundance in urinary exosomes;(5) perform metabolomics analyses of microdissected tubules and perfusate;and (6) provide training in all of the above.

Public Health Relevance

This Core offers a functional, biochemical, molecular, and analytical approach applied to microdissected tubules and defined renal epithelial cells to address relevant questions proposed by users. Core B's expertise in measuring transport of ions, solutes and other molecules across renal epithelial cell membranes, available in few labs nationally, promises to provide novel insight into our understanding of kidney disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK079307-06
Application #
8625498
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (M2))
Project Start
Project End
Budget Start
2013-09-16
Budget End
2014-07-31
Support Year
6
Fiscal Year
2013
Total Cost
$255,713
Indirect Cost
$50,113
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Birder, Lori A; Kullmann, F Aura (2018) Role of neurogenic inflammation in local communication in the visceral mucosa. Semin Immunopathol 40:261-279
Ziebart, Andreas; Huber, Ulrich; Jeske, Sandra et al. (2018) The influence of chemotherapy on adenosine-producing B cells in patients with head and neck squamous cell carcinoma. Oncotarget 9:5834-5847
Han, Hwa I; Skvarca, Lauren B; Espiritu, Eugenel B et al. (2018) The role of macrophages during acute kidney injury: destruction and repair. Pediatr Nephrol :
Mackie, Timothy D; Kim, Bo-Young; Subramanya, Arohan R et al. (2018) The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK). J Biol Chem 293:3201-3217
Rondon-Berrios, Helbert; Tandukar, Srijan; Mor, Maria K et al. (2018) Urea for the Treatment of Hyponatremia. Clin J Am Soc Nephrol 13:1627-1632
Amengual, Jaume; Guo, Liang; Strong, Alanna et al. (2018) Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circ Res 122:568-582
Truschel, Steven T; Clayton, Dennis R; Beckel, Jonathan M et al. (2018) Age-related endolysosome dysfunction in the rat urothelium. PLoS One 13:e0198817
Mackie, Timothy D; Brodsky, Jeffrey L (2018) Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics 209:637-650
Sanders, Alison P; Saland, Jeffrey M; Wright, Robert O et al. (2018) Perinatal and childhood exposure to environmental chemicals and blood pressure in children: a review of literature 2007-2017. Pediatr Res 84:165-180
Doonan, Lynley M; Fisher, Edward A; Brodsky, Jeffrey L (2018) Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 1863:762-771

Showing the most recent 10 out of 380 publications