The Kidney Imaging Core provides a national resource for Center users who require detailed and quantitative morphological analysis of kidney- and lower urinary tract-associated cells, tissues, and organs. The Imaging Core complements each of the other Center cores by providing critical information about the amounts, localization, and dynamics of molecules, cells, and tissues in normal and disease states. Thus, the Imaging Core is an integral part of the Center's mission to support multidisciplinary research in physiology, pathophysiology, and molecular biology of the kidney, as well as training and information transfer amongst Center users and cores. Users of the Imaging Core have access to state-of-the-art tools that allow for live cell and intravital microscopy, stimulated emission depletion (STED) super-resolution imaging, ultrastructural analysis, and novel magnetic resonance imaging modalities. Furthermore, the Imaging Core provides expertise that includes: detailed knowledge of kidney and lower urinary tract histology, pathology, and cytoarchitecture;sophisticated know-how in the proper techniques for culturing cells and tissues, as well as harvesting and fixing tissue obtained from research animals;familiarity with the specialized staining techniques needed to label these cells/tissues;expertise in the proper techniques to image and analyze live kidney and lower urinary tract tissues both ex vivo and in vivo;and knowledge of experimental design and image analysis, including interpretation of morphological data. The broad, long-range objectives and goals of the Core are multifold: (1) to serve as a national center for imaging of kidney- and lower urinary tractassociated cells, tissues, and organs;(2) to support the specialized techniques, methods, and procedures utilized by the investigators that comprise the Pittsburgh Center for Kidney Research;(3) to transfer Imaging Core expertise to Center investigators through training mechanisms including mini sabbaticals;(4) to provide for a higher standard of quality control through the Core's ability to conduct procedures on a routine and consistent basis.
The Kidney Imaging Core is the component of the Pittsburgh Center for Kidney Research that examines the amounts, distribution, and dynamics of molecules and cells in the tissues and organs that comprise the urinary tract. These insights are important to understand the underlying reason for diseases that affect the kidneys and bladder.
Jackson, Travis C; Kotermanski, Shawn E; Kochanek, Patrick M et al. (2018) Oxidative Stress Induces Release of 2'-AMP from Microglia. Brain Res : |
Balchak, Deidra M; Thompson, Rebecca N; Kashlan, Ossama B (2018) The epithelial Na+ channel ? subunit autoinhibitory tract suppresses channel activity by binding the ? subunit's finger-thumb domain interface. J Biol Chem 293:16217-16225 |
Sun, Zhihao; Brodsky, Jeffrey L (2018) The degradation pathway of a model misfolded protein is determined by aggregation propensity. Mol Biol Cell 29:1422-1434 |
Boyd-Shiwarski, Cary R; Shiwarski, Daniel J; Roy, Ankita et al. (2018) Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol Biol Cell 29:499-509 |
Kashlan, Ossama B; Kinlough, Carol L; Myerburg, Michael M et al. (2018) N-linked glycans are required on epithelial Na+ channel subunits for maturation and surface expression. Am J Physiol Renal Physiol 314:F483-F492 |
Jackson, Edwin K; Mi, Eric; Ritov, Vladimir B et al. (2018) Extracellular Ubiquitin(1-76) and Ubiquitin(1-74) Regulate Cardiac Fibroblast Proliferation. Hypertension 72:909-917 |
Ray, Evan C; Miller, Rachel G; Demko, John E et al. (2018) Urinary Plasmin(ogen) as a Prognostic Factor for Hypertension. Kidney Int Rep 3:1434-1442 |
Jobbagy, Soma; Tan, Roderick J (2018) Nitrolipids in kidney physiology and disease. Nitric Oxide : |
Joshi, Suhasini; Wang, Tai; Araujo, ThaĆs L S et al. (2018) Adapting to stress - chaperome networks in cancer. Nat Rev Cancer 18:562-575 |
Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan et al. (2018) Adenosine Receptors Influence Hypertension in Dahl Salt-Sensitive Rats: Dependence on Receptor Subtype, Salt Diet, and Sex. Hypertension 72:511-521 |
Showing the most recent 10 out of 380 publications