Mouse models of human disease have provided essential insights into renal pathophysiological processes and are an important preclinical resource to test therapeutic and preventive approaches in acute kidney injury (AKI).
The specific aims of Core B are to provide the facilities and requisite skills 1) to study murine models of AKI, 2) for small animal imaging, and 3) to determine renal physiological changes in AKI. This core will specifically provide (i) expertise in development and training in the use of rodent models of AKI specifically in the setting of ischemia/reperfusion injury, sepsis and renal transplantation, (ii) a multi-modality small animal imaging core that will provide state-of-the-art molecular imaging, including functional, structural and metabolic imaging using magnetic resonance imaging/spectroscopy, high frequency ultrasonography, microCT, gamma-ray imaging (gamma camera, microSPECT/CT, microPET/CT), and optical imaging (bioluminescence and fluorescence), and (iii) a physiology core that will provide expertise and training for studying renal function on the whole kidney and at the single nephron level, including micropuncture techniques and determination of GFR, microanalysis of tubular fluid and tubular reabsorption, renal hemodynamics with assessment of tubuloglomerular feedback, and metabolic assessment of kidney oxygen consumption in rodents. Core B will also provide technical expertise for the isolation of primary renal and vascular cells in culture from rodents. The intent of Core B is to provide unique resources that help overcome barriers for investigators to utilize relevant rodent models for in vivo studies and rodent cell lines for in vitro studies to advance understanding of the pathophysiology of AKI. Core B has been very successful in supporting the kidney research community. Since the inception of Core B, more than 5,800 procedures have been performed for 80 principal investigators involving 92 projects. Of the 80 investigators, 60 (75%) were non-core personnel. The number of investigators using Core B each year is increasing, as is the annual publication rate. Core B has also supported the research efforts of 11 Pilot and Feasibility grant awardees. These combined efforts have been currently recognized in 83 peer-reviewed publications. The sophisticated infrastructure coupled with the unique expertise of Core B will continue to catalyze collaborative efforts between and UCSD and produce innovative new initiatives that will advance AKI research.

Public Health Relevance

Acute kidney injury (AKI) is a serious medical condition that has an attendant high morbidity and mortality. Core B proposes to provide resources needed to study AKI in the pre-clinical setting, in order to promote the translation of basic science findings back to the bedside.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK079337-07
Application #
8733666
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$230,707
Indirect Cost
$48,985
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Bernard, Karen; Logsdon, Naomi J; Benavides, Gloria A et al. (2018) Glutaminolysis is required for transforming growth factor-?1-induced myofibroblast differentiation and activation. J Biol Chem 293:1218-1228
Singal, Ashwani K; Jackson, Bradford; Pereira, Glauber B et al. (2018) Biomarkers of Renal Injury in Cirrhosis: Association with Acute Kidney Injury and Recovery after Liver Transplantation. Nephron 138:1-12
Crotty Alexander, Laura E; Drummond, Christopher A; Hepokoski, Mark et al. (2018) Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol 314:R834-R847
Pang, Paul; Abbott, Molly; Abdi, Malyun et al. (2018) Pre-clinical model of severe glutathione peroxidase-3 deficiency and chronic kidney disease results in coronary artery thrombosis and depressed left ventricular function. Nephrol Dial Transplant 33:923-934
Redmann, Matthew; Benavides, Gloria A; Wani, Willayat Yousuf et al. (2018) Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biol 17:59-69
Lever, Jeremie M; Yang, Zhengqin; Boddu, Ravindra et al. (2018) Parabiosis reveals leukocyte dynamics in the kidney. Lab Invest 98:391-402
Pathak, Chetna M; Ix, Joachim H; Anderson, Cheryl A M et al. (2018) Variation in Sodium Intake and Intra-individual Change in Blood Pressure in Chronic Kidney Disease. J Ren Nutr 28:125-128
Thomson, Scott C; Vallon, Volker (2018) Renal Effects of Incretin-Based Diabetes Therapies: Pre-clinical Predictions and Clinical Trial Outcomes. Curr Diab Rep 18:28
Garg, Amit X; Devereaux, P J; Hill, Andrew et al. (2018) Oral curcumin in elective abdominal aortic aneurysm repair: a multicentre randomized controlled trial. CMAJ 190:E1273-E1280
Hepokoski, Mark L; Malhotra, Atul; Singh, Prabhleen et al. (2018) Ventilator-Induced Kidney Injury: Are Novel Biomarkers the Key to Prevention? Nephron 140:90-93

Showing the most recent 10 out of 404 publications