The long-term objective of the Mayo Center for Cell Signaling in Gastroenterology (MCCSG) is to understand the signaling pathways that control the function of gastrointestinal cells in health and disease. The Center members are organized into three Mechanistic Research Theme interest groups: i.) signal transduction;ii.) membrane receptors and ion channels;and, iii.) genetics and gene regulation. Each Mechanistic Research Theme represents an important area of signaling research that is an area of tremendous strength at Mayo Clinic. Our global hypothesis is that rapid advances in clinical care for patients with digestive diseases requires strong support of basic science research to identify disease mechanisms and intermediate biomarkers for digestive diseases, and that these basic science discoveries will generate translational research opportunities resulting in clinical trials. The Center goals are to promote and enhance cell signaling research by: i.) fostering collaborative, multidisciplinary research both by expanding the technical and collaborative capabilities of established Gl scientists and by attracting investigators from other disciplines;ii.) developing and implementing a robust and diverse Scientific Enrichment Program that includes seminars, workshops, symposia, a visiting faculty program, mini-sabbaticals, and web-based curricula;iii.) identifying and nurturing development of new Gl investigators via a rigorously peer-reviewed, widely publicized Pilot and Feasibility Program;and, iv.) promoting synergistic interaction between the signaling research base and the clinical research expertise of Mayo Gl investigators through activities that support signaling-related research and promote translation of basic science discoveries into clinical research. The Center seeks to support the three Mechanistic Research Themes by creating a supportive infrastructure that makes technologies more easily accessible, provides technical expertise to members from experts in a particular technology, uses existing resources efficiently, and develops novel methodologies through three linked biomedical Center Cores. The proposed biomedical cores are the: i.) Clinical Core;ii.) Genetics Core;and, iii.) Optical Microscopy Core. These Cores were developed by Center leadership in response to detailed and thoughtful analysis of barriers to cell signaling research and Center member surveys. The Core's specific goals are to: i.) develop and/or exploit advanced methods in biospecimen acquisition, processing, and annotation to enhance biospecimen collection and accessibility for Center investigators;ii.) enhance Center member's access to and implementation of current and emerging key genetic technologies;and, iii.) provide Center members with reliable access to state-of-the-art microscopic technology and expertise that will facilitate investigations of the pathogenesis of gastrointestinal and liver diseases.

Public Health Relevance

Gastrointestinal diseases and their complications have a significant affect on public health and health care utilization costs. Research supported by this Center grant, has the potential to improve care of patients afflicted with gastrointestinal disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK084567-03
Application #
8119015
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Program Officer
Podskalny, Judith M,
Project Start
2009-09-01
Project End
2014-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
3
Fiscal Year
2011
Total Cost
$1,114,891
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Fukushima, Masanori; Dasgupta, Debanjali; Mauer, Amy S et al. (2018) StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis. J Biol Chem 293:15277-15289
Dou, Changwei; Liu, Zhikui; Tu, Kangsheng et al. (2018) P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. Gastroenterology 154:2209-2221.e14
Kabashima, Ayano; Hirsova, Petra; Bronk, Steven F et al. (2018) Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma. J Hepatol 68:1228-1238
Masyuk, Anatoliy I; Masyuk, Tatyana V; Lorenzo Pisarello, Maria J et al. (2018) Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology 67:1088-1108
Knutson, Katilyn; Strege, Peter R; Li, Joyce et al. (2018) Whole Cell Electrophysiology of Primary Cultured Murine Enterochromaffin Cells. J Vis Exp :
Kanamori, Karina S; de Oliveira, Guilherme C; Auxiliadora-Martins, Maria et al. (2018) Two Different Methods of Quantification of Oxidized Nicotinamide Adenine Dinucleotide (NAD+) and Reduced Nicotinamide Adenine Dinucleotide (NADH) Intracellular Levels: Enzymatic Coupled Cycling Assay and Ultra-performance Liquid Chromatography (UPLC)-Mass Bio Protoc 8:
Orozco, Carlos A; Martinez-Bosch, Neus; Guerrero, Pedro E et al. (2018) Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci U S A 115:E3769-E3778
Cipriani, Gianluca; Gibbons, Simon J; Miller, Katie E et al. (2018) Change in Populations of Macrophages Promotes Development of Delayed Gastric Emptying in Mice. Gastroenterology 154:2122-2136.e12
Razidlo, Gina L; Burton, Kevin M; McNiven, Mark A (2018) Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. J Biol Chem 293:11143-11153
Kostallari, Enis; Hirsova, Petra; Prasnicka, Alena et al. (2018) Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 68:333-348

Showing the most recent 10 out of 537 publications