A requisite step for translating laboratory-based discoveries into human treatments is the process of demonstrating proof-in-concept of in vitro signaling paradigms within human tissues. Despite the numerous signaling strengths of the Research Base that comprises this Center Grant proposal, surveys of this base revealed an unmet need to enhance the availability of human biological samples and downstream state-ofart technologies that can be carried out with these samples by the Research Base. In order to meet this need, we propose a Clinical Core, which will maintain two linked Objectives: first;to facilitate the collection and annotation of Gl biospecimens that can enhance the translational research of each of the 3 Disease Focus Areas contained within this grant (enteric neurosciences, liver pathobiology, and carcinogenesis), and second;to provide subsidized, yet state-of-the-art technologies with which the Research Base can use these biospecimens to translate signaling research within the paradigm of human specimens. These Objectives will be achieved by: i.) integration of existing tissue collections and annotated data into a collaborative webbased organizational structure that will be easily accessible by the Research Base;ii.) providing support to expand current tissue collections and initiate collection of biospecimens representing additional digestive disease states;iii.) linking the Research Base with expert intramural facilities that can provide essential technologies using human specimens including, but not limited to, tissue microarray, laser capture microdissection linked with PCR, and others, through a subsidized mechanism;and, v.) providing skilled technologist support to perform biospecimen processing tasks either not supported by intramural facilities or that require Gl specific-expertise. Thus, this Clinical Core will provide its Research Base with a cost effective approach by which to collaboratively translate Gl signaling paradigms into human tissues using state-of-art technologies.
Showing the most recent 10 out of 537 publications