The objective of the C-SiG Clinical Core is to provide a user-friendly, one-stop service to access digestive disease-related biospecimens for Center members. Under the direction of Dr. Lisa Boardman, a well-established clinician scientist with IRB and biobanking expertise, the organization and infrastructure of the CSiG Clinical Core provides essential expertise and personnel to advise and interact with C-SiG members in pursuit of two Specific Aims: First, to provide support to enhance existing individual Gl-related biobanks operating within the Clinical Core umbrella and develop future repositories. Second, to centralize, expedite, and facilitate access to Gl-related biobanks and utilization of Gl biospecimens for C-SiG members to translate signaling research within the paradigm of human specimens. To achieve these aims C-SiG Clinical Core: i) Provides a central access point and streamlined process for biospecimens requests; ii) Strengthens the existing Gl tissue biorepositories by facilitating new specimen collection, and, iii) Develops new tissue collections. The Core integrates existing resources from individual investigators in the Division of Gastroenterology and Hepatology and from institutional biospecimens repositories, providing a cost effective approach to collaboratively translate Gl signaling paradigms into human tissues. Additionally, the C-SiG Clinical Core has developed strong partnerships with the 1R6, anatomic pathology frozen section laboratories (aka TRAG; source of all surgical biospecimens), and the Pathology Research Core (facility that performs tissue sectioning, immunostaining, etc). These partnerships allow C-SiG Clinical Core personnel to expedite movement of protocols and projects through these key institutional resources. The primary services offered by the C-SiG Clinical Core are IR6 protocol development support, biospecimens request support (including identification of appropriate tissues, pathology review, & coordinating tissue processing), and biobank support services (IR6 protocol templates, tissue inventory management software, standardized questionnaires, daily searches of the surgical list for approved 1R6 protocols, and limited study coordinator support for consenting). In response to C-SiG member feedback, we have recently added services to support the collection of stool for human microbiome research. The C-SiG Clinical Core services have been used by 63% of Center members and have supported 49 publications.

Public Health Relevance

Gastrointestinal diseases and their complications have a significant effect on public health and health care utilization costs. The C-SiG Clinical Core supports scientific advancements of C-SiG members that are critically important for furthering understanding of the mechanisms that underlie digestive diseases, which can lead to practical applications for the diagnosis, prevention, monitoring and treatment of human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK084567-10
Application #
9557018
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
10
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Strege, Peter R; Mazzone, Amelia; Bernard, Cheryl E et al. (2018) Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased NaV1.5 current and mechanosensitivity. Am J Physiol Gastrointest Liver Physiol 314:G494-G503
Rizvi, Sumera; Eaton, John; Yang, Ju Dong et al. (2018) Emerging Technologies for the Diagnosis of Perihilar Cholangiocarcinoma. Semin Liver Dis 38:160-169
Bianco, F; Eisenman, S T; Colmenares Aguilar, M G et al. (2018) Expression of RAD21 immunoreactivity in myenteric neurons of the human and mouse small intestine. Neurogastroenterol Motil 30:e13429
Druliner, Brooke R; Ruan, Xiaoyang; Sicotte, Hugues et al. (2018) Early genetic aberrations in patients with sporadic colorectal cancer. Mol Carcinog 57:114-124
Masyuk, Tatyana V; Masyuk, Anatoliy I; LaRusso, Nicholas F (2018) Polycystic liver disease: The interplay of genes causative for hepatic and renal cystogenesis. Hepatology 67:2462-2464
Smoot, Rory L; Werneburg, Nathan W; Sugihara, Takaaki et al. (2018) Platelet-derived growth factor regulates YAP transcriptional activity via Src family kinase dependent tyrosine phosphorylation. J Cell Biochem 119:824-836
Hale, Vanessa L; Jeraldo, Patricio; Mundy, Michael et al. (2018) Synthesis of multi-omic data and community metabolic models reveals insights into the role of hydrogen sulfide in colon cancer. Methods 149:59-68
Alcaino, Constanza; Knutson, Kaitlyn R; Treichel, Anthony J et al. (2018) A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci U S A 115:E7632-E7641
Rizvi, Sumera; Gores, Gregory J (2018) Fibroblast Growth Factor Receptor Inhibition for Cholangiocarcinoma: Looking Through a Door Half-Opened. Hepatology 68:2428-2430
Lorenzo Pisarello, Maria; Masyuk, Tatyana V; Gradilone, Sergio A et al. (2018) Combination of a Histone Deacetylase 6 Inhibitor and a Somatostatin Receptor Agonist Synergistically Reduces Hepatorenal Cystogenesis in an Animal Model of Polycystic Liver Disease. Am J Pathol 188:981-994

Showing the most recent 10 out of 537 publications