The Molecular Phenotyping Core will provide analytical tools to the MNORC investigators to elucidate molecular mechanisms of disease relevant to obesity and nutritional disorders including structural identification and quantification of metabolites, epigenetics, optogenetics and perform functional metabolic studies. In addition to providing instrumental infrastructure, the Core staff will provide consultation and collaboration to apply metabolomic, epigenetic and optogenetic platforms in nutrition and obesity research. Where needed, the Core laboratories will assist in development of new analytical methods to meet the research objectives of the investigators. The Molecular Phenotyping Core will optimize the efficiency and cost-effectiveness by providing these services to MNORC investigators through a centralized laboratory. This avoids the need for individual investigators to purchase and maintain high priced instrumentation in their own laboratories and avoids the high cost of commercial analytical services. In the past five years the core has provided standardized analytical techniques for the analysis of small molecule metabolites such as amino acid, lipid and nucleic acid metabolites in samples from murine, rodent and human tissues, plasma, and urine, and cultured cells. New offerings include epigenetic and optogenetic services which will enhance the offerings available for the MNORC investigators. Emphasis will also be placed on fulfilling the needs of Investigators of the MNORC which will aim to maximize benefits from the power of molecular analysis. We are particularly interested in addressing three areas of need: first, applying the unique sensitivity and specificity of molecular phenotyping techniques to broaden understanding of nutritional disorders; second, the development of innovative techniques for the detection and structural elucidation of nutrition-related biomolecules; and three, providing training for graduate students and postdoctoral fellows with an interest in nutrition research. By centralizing and standardizing procedures, the Core provides a common set of analytical tools that will lead to a unified understanding of molecular mechanisms involved in physiologic and pathophysiologic processes underlying obesity and other nutrition related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK089503-09
Application #
9514134
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
9
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Jadoon, Adil; Mathew, Anna V; Byun, Jaeman et al. (2018) Gut Microbial Product Predicts Cardiovascular Risk in Chronic Kidney Disease Patients. Am J Nephrol 48:269-277
Mathew, Anna V; Li, Lei; Byun, Jaeman et al. (2018) Therapeutic Lifestyle Changes Improve HDL Function by Inhibiting Myeloperoxidase-Mediated Oxidation in Patients With Metabolic Syndrome. Diabetes Care 41:2431-2437
Zhao, Xu-Yun; Xiong, Xuelian; Liu, Tongyu et al. (2018) Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat Commun 9:2986
Cho, Chun-Seok; Park, Hwan-Woo; Ho, Allison et al. (2018) Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1-mediated p62/sequestosome 1 phosphorylation. Hepatology 68:1331-1346
Zhang, Kezhong; Kim, Hyunbae; Fu, Zhiyao et al. (2018) Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice. Gastroenterology 154:224-237
Dinov, Ivo D; Palanimalai, Selvam; Khare, Ashwini et al. (2018) Randomization-Based Statistical Inference: A Resampling and Simulation Infrastructure. Teach Stat 40:64-73
Isaman, Deanna J M; Rothberg, Amy E (2018) Weight Mobility and Obesity in a Representative Sample of the US Adult Population. Int J Endocrinol 2018:4561213
Wernisch, Stefanie; Afshinnia, Farsad; Rajendiran, Thekkelnaycke et al. (2018) Probing the application range and selectivity of a differential mobility spectrometry-mass spectrometry platform for metabolomics. Anal Bioanal Chem 410:2865-2877
Assari, Shervin (2018) Self-rated Health and Mortality due to Kidney Diseases: Racial Differences in the United States. Adv Biomed Res 7:4
Li, Ziru; Hardij, Julie; Bagchi, Devika P et al. (2018) Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 110:134-140

Showing the most recent 10 out of 342 publications