Several forms of stem cell modificafion are currently envisioned that will facilitate the development of the next generafion of cell-based therapeutics. Integrafing viral vectors are commonly used to permanently and most efficienfiy insert genes of interest, or to introduce libraries of genes to conduct screens. A current major research emphasis and area of expertise of invesfigators at CHOP is to characterize genetic disorders in stem cells. One of the next areas of high priority of research will be to develop methods to correct monogenic genefic disorders. For this purpose, ZFNs are currenfiy the only method that has sufficient efficiency to modify stem cells at levels necessary to support therapy. We will be providing these services in a fimely, cost-efficient manner that will provide high quality large-scale products that avoids the need for each investigator to develop the necessary skill sets. By providing the best state-of-the-art backbone for the vectors and the latest in ZFN technology we anticipate that we will not only allow better standardization of product on the UPENN/CHOP campus, but also enhance the quality of available products, leading to enhanced producfivity and synergy on campus in the field of benign hematopoiesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK090969-02
Application #
8298253
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$142,097
Indirect Cost
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Cheng, Ying; Chikwava, Kudakwashe; Wu, Chao et al. (2016) LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J Clin Invest 126:1267-81
Wang, Yuhuan; Hayes, Vincent; Jarocha, Danuta et al. (2015) Comparative analysis of human ex vivo-generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale. Blood 125:3627-36
Gu, Bai-Wei; Apicella, Marisa; Mills, Jason et al. (2015) Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients. PLoS One 10:e0127414
Byrska-Bishop, Marta; VanDorn, Daniel; Campbell, Amy E et al. (2015) Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 125:993-1005
Ivanovska, Irena L; Shin, Jae-Won; Swift, Joe et al. (2015) Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol 25:523-32
Rozenova, Krasimira; Jiang, Jing; Donaghy, Ryan et al. (2015) MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood 125:1730-8
Noh, Ji-Yoon; Gandre-Babbe, Shilpa; Wang, Yuhuan et al. (2015) Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells. J Clin Invest 125:2369-74
Dingal, P C Dave P; Bradshaw, Andrew M; Cho, Sangkyun et al. (2015) Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat Mater 14:951-60
Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S et al. (2015) Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics Chromatin 8:16
Jain, Deepti; Mishra, Tejaswini; Giardine, Belinda M et al. (2015) Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system. Genom Data 4:1-7

Showing the most recent 10 out of 46 publications