The Mass Spectrometry (MS) Facility Core has been established to maintain and provide the mass spectrometric and associated analytical capabilities required to support environmental health-related research conducted by EHS Center investigators, program project grant investigators, and pilot project investigators. This Core maintains state-of-the-art sample preparation and instrumental techniques that increase the sensitivity, mass range, specificity, and data processing capacity of the Core's analytical capabilities and the necessary databases for protein and organic compound identifications. In addition, this Core serves as an educational resource by providing an interdisciplinary environment in which graduate students in chemistry, biochemistry, and toxicology pursue their thesis research. The facility provides a wealth of experience in the analysis of samples as well as in the interpretation of experimental data. Finally, the facility supports the development and implementation of new mass spectrometer configurations that will advance the analysis of environmental agents as well as proteomics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Center Core Grants (P30)
Project #
5P30ES000210-40
Application #
7596382
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
40
Fiscal Year
2008
Total Cost
$252,164
Indirect Cost
Name
Oregon State University
Department
Type
DUNS #
053599908
City
Corvallis
State
OR
Country
United States
Zip Code
97339
Nix, Cassandra E; Harper, Bryan J; Conner, Cathryn G et al. (2018) Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles. Antibiotics (Basel) 7:
Geier, Mitra C; James Minick, D; Truong, Lisa et al. (2018) Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish. Toxicol Appl Pharmacol 354:115-125
Welch, Barrett; Smit, Ellen; Cardenas, Andres et al. (2018) Trends in urinary arsenic among the U.S. population by drinking water source: Results from the National Health and Nutritional Examinations Survey 2003-2014. Environ Res 162:8-17
Denluck, Lindsay; Wu, Fan; Crandon, Lauren E et al. (2018) Reactive oxygen species generation is likely a driver of copper based nanomaterial toxicity. Environ Sci Nano 5:1473-1481
Ahn, Soyoun; Magaña, Armando Alcazar; Bozarth, Connie et al. (2018) Integrated identification and quantification of cyanobacterial toxins from Pacific Northwest freshwaters by Liquid Chromatography and High-resolution Mass Spectrometry. J Mex Chem Soc 62:
Titaley, Ivan A; Ogba, O Maduka; Chibwe, Leah et al. (2018) Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non-targeted analysis of comparative samples. J Chromatogr A 1541:57-62
Geier, Mitra C; Chlebowski, Anna C; Truong, Lisa et al. (2018) Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch Toxicol 92:571-586
Bugel, Sean M; Tanguay, Robert L (2018) Multidimensional chemobehavior analysis of flavonoids and neuroactive compounds in zebrafish. Toxicol Appl Pharmacol 344:23-34
Gaulke, Christopher A; Rolshoven, John; Wong, Carmen P et al. (2018) Marginal Zinc Deficiency and Environmentally Relevant Concentrations of Arsenic Elicit Combined Effects on the Gut Microbiome. mSphere 3:
Roper, Courtney; Simonich, Staci L Massey; Tanguay, Robert L (2018) Development of a high-throughput in vivo screening platform for particulate matter exposures. Environ Pollut 235:993-1005

Showing the most recent 10 out of 690 publications