In accord with the goals and strategic vision of the Center, the Career Development Program (CDP) has three major goals. These include: 1) successful mentoring and career development of junior faculty; 2) recruitment and mentoring of investigators new to environmental health sciences research, and, 3) providing Center investigators with opportunities and access to resources and technologies that will advance research programs in accord with Center goals and vision. The mission of the University of Rochester Environmental Health Sciences Center (EHSC) is to identify the means by which environmental and chemical exposures act as modifying factors for human disease and dysfunction, and to use this information to prevent or ameliorate adverse health consequences and thereby improve public health. This mission is achieved by the integration of basic science with clinical research, and the translation of this research through community outreach, education, and prevention. This is also achieved by enhancing the career development of talented environmental health investigators. The areas of research emphasis for the EHSC are Pulmonary &Cardiovascular Diseases, Neurodevelopmental Disorders &Neurodegerierative Diseases, and Musculoskeletal Diseases. The Pulmonary &Cardiovascular Disease Program brings together a multidisciplinary group of scientists whose research focuses on the impact of several types of environmental exposures on cardiopulmonary health. These exposures include ambient and occupational particulates, oxidant gases, ionizing radiation, and engineered nanoparticles. The Neurodevelopmental Disorders &Neurodegenerative Disease Program is focused on the effects of early developmental exposures to neurotoxicants and the consequences to cognitive, motor, and sensory function. This group is also directed at later, emergent, neurodegenerative diseases induced by these agents. The Musculoskeletal Disease Program is dedicated to producing molecular and cellular advances related to the effects of toxicants on tissues comprising the bones and joints. These advances are translated into studies performed in animal models with the ultimate goal of moving the work into human studies and clinical trials. The efforts of these Programs are promoted and assisted through two Facility Cores: Biostatistics and the Integrative Health Sciences Facility. The latter consists of Translational Services, an Animal/Human Inhalation Facility, and an Animal/Human Behavioral Sciences Facility. Collaborations, career development, and new directions are significantly enhanced through a Pilot Project Program and Career Development Program. The Community Outreach &Education Core is a source of environmental health information for the entire community, and promotes interdisciplinary research, translation, prevention, and engagement activities. Oversight of all Center functions and programs occurs through the Administrative Core.

Public Health Relevance

The broad goals of this Center are to establish innovative programs of excellence in environmental health sciences by providing scientific and programmatic support. This Center provides the framework to generate novel research findings and then convert these into critical information, resources, and tools that can be used by public health officials, medical professionals, and the community to prevent disease and improve public health.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Center Core Grants (P30)
Project #
Application #
Study Section
Environmental Health Sciences Review Committee (EHS)
Program Officer
Reinlib, Leslie J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rochester
Public Health & Prev Medicine
Schools of Dentistry
United States
Zip Code
Beach, Tyler A; Groves, Angela M; Johnston, Carl J et al. (2018) Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. Int J Radiat Biol 94:1104-1115
Morris-Schaffer, Keith; Sobolewski, Marissa; Welle, Kevin et al. (2018) Cognitive flexibility deficits in male mice exposed to neonatal hyperoxia followed by concentrated ambient ultrafine particles. Neurotoxicol Teratol 70:51-59
Santos, Susana; Eekhout, Iris; Voerman, Ellis et al. (2018) Gestational weight gain charts for different body mass index groups for women in Europe, North America, and Oceania. BMC Med 16:201
Huang, Li-Shan; Cory-Slechta, Deborah A; Cox, Christopher et al. (2018) Analysis of Nonlinear Associations between Prenatal Methylmercury Exposure from Fish Consumption and Neurodevelopmental Outcomes in the Seychelles Main Cohort at 17 Years. Stoch Environ Res Risk Assess 32:893-904
Leonard, Antony; Rahman, Arshad; Fazal, Fabeha (2018) Importins ? and ? signaling mediates endothelial cell inflammation and barrier disruption. Cell Signal 44:103-117
Prince, Lisa M; Rand, Matthew D (2018) Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation. Toxicology 393:113-122
Cory-Slechta, D A; Allen, J L; Conrad, K et al. (2018) Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. Neurotoxicology 69:217-231
Irwin, Jessica L; Yeates, Alison J; Mulhern, Maria S et al. (2018) Maternal Gestational Immune Response and Autism Spectrum Disorder Phenotypes at 7 Years of Age in the Seychelles Child Development Study. Mol Neurobiol :
Feiler, Marina Oktapodas; Patel, Deven; Li, Huiqi et al. (2018) The association between early-life relative telomere length and childhood neurodevelopment. Neurotoxicology 65:22-27
Duffney, Parker F; McCarthy, Claire E; Nogales, Aitor et al. (2018) Cigarette smoke dampens antiviral signaling in small airway epithelial cells by disrupting TLR3 cleavage. Am J Physiol Lung Cell Mol Physiol 314:L505-L513

Showing the most recent 10 out of 556 publications