The MIT Center for Environmental Health Sciences is a multidisciplinary research organization which has taken as its primary mission the discovery of the relationship between human exposure to environmental chemicals, mutation, and genetic diseases such as cancer and birth defects. The Center faculty are integrated in six multidisciplinary research programs which address the sources, environmental movement and genetic effects of chemicals borne to humans by food, air and water. One of these, the Superfund Basic Research Program, involves study of chemical exposure and genetic change in the population of the nearby Aberjona River Basin. This major effort began with four years of public outreach activities and which continue in a public education program to explain the basis, potential value and limitations of our studies in this community in which many of our faculty and staff reside. The MIT academic departments represented by Center faculty include Toxicology (7), Civil Engineering (7), Chemical Engineering (5), Mechanical Engineering (7), Chemistry (2), Biology (2) and Earth and Planetary Sciences (1). Joining these several disciplines together are the shared Core Laboratories in Analytical Chemistry and Toxicology which permit analysis, testing and identification of the most important human mutagens in complex environmental mixtures. Key technologies developed at the Center include means to measure and identify chemicals in human tissue proteins and measurement of mutations and mutational spectra in human cells or tissues. These technologies now drive a transmutation of present core facilities and faculty research toward direct measurement of chemicals and patterns of genetic changes in human cells and tissues. Through these studies we hope to fulfill our primary mission and make a contribution to public health that will justify public support of work.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Center Core Grants (P30)
Project #
2P30ES002109-16
Application #
2153102
Study Section
Special Emphasis Panel (SRC)
Project Start
1978-07-01
Project End
1999-03-31
Budget Start
1994-04-01
Budget End
1995-03-31
Support Year
16
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
Organized Research Units
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Rizzo, Alessandro A; Vassel, Faye-Marie; Chatterjee, Nimrat et al. (2018) Rev7 dimerization is important for assembly and function of the Rev1/Pol? translesion synthesis complex. Proc Natl Acad Sci U S A 115:E8191-E8200
Kulik, Heather J (2018) Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys 20:20650-20660
Gu, Chen; Ramos, Jillian; Begley, Ulrike et al. (2018) Phosphorylation of human TRM9L integrates multiple stress-signaling pathways for tumor growth suppression. Sci Adv 4:eaas9184
Zamora, Cristina Y; Madec, Amaƫl G E; Neumann, Wilma et al. (2018) Design, solid-phase synthesis and evaluation of enterobactin analogs for iron delivery into the human pathogen Campylobacter jejuni. Bioorg Med Chem 26:5314-5321
Wong, Madeline Y; Chen, Kenny; Antonopoulos, Aristotelis et al. (2018) XBP1s activation can globally remodel N-glycan structure distribution patterns. Proc Natl Acad Sci U S A 115:E10089-E10098
Hadley, Rose C; Gagnon, Derek M; Brophy, Megan Brunjes et al. (2018) Biochemical and Spectroscopic Observation of Mn(II) Sequestration from Bacterial Mn(II) Transport Machinery by Calprotectin. J Am Chem Soc 140:110-113
Lieberman, Mia T; Van Tyne, Daria; Dzink-Fox, JoAnn et al. (2018) Long-Term Colonization Dynamics of Enterococcus faecalis in Implanted Devices in Research Macaques. Appl Environ Microbiol 84:
Wadduwage, Dushan N; Kay, Jennifer; Singh, Vijay Raj et al. (2018) Automated fluorescence intensity and gradient analysis enables detection of rare fluorescent mutant cells deep within the tissue of RaDR mice. Sci Rep 8:12108
Jackson, Megan N; Oh, Seokjoon; Kaminsky, Corey J et al. (2018) Strong Electronic Coupling of Molecular Sites to Graphitic Electrodes via Pyrazine Conjugation. J Am Chem Soc 140:1004-1010
Chen, Percival Yang-Ting; Funk, Michael A; Brignole, Edward J et al. (2018) Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 293:10404-10412

Showing the most recent 10 out of 970 publications