The primary mission of MIT's COEC program is to raise awareness and understanding of the impact of the environment on health. Awareness is the first step toward change, and therefore through educational outreach, we aim to empower citizens to prevent environmentally induced diseases by providing them with knowledge to help inform wise choices. While COEC activities reach people of all ages, it is the philosophy of this COEC to focus upon youth, a critical at-risk portion of our community who can benefit tremendously from knowledge that will help them make better life choices. Furthermore, understanding environmental health and understanding the fundamentals of life sciences go hand-in-hand, thus providing the dual benefit of informed decision-making, and inspiration in science. Therefore, MIT COEC proposes to continue with its emphasis on youth, while at the same time extending programmatic opportunities to teachers and health care professionals, who are best poised to disseminate valuable environmental health information to the community. This COEC group continues to be innovative both in terms of the conceptual materials covered, but also in terms of the pedagogical tools. Through the development of novel hands-on programs, hundreds of students have become Involved in the learning process, and thus receptive to important concepts about the environment and its impact on their health. In addition, this past cycle, COEC reached out not only to students, but also to thousands of community members of all ages, through a variety of media, including participatory workshops, museum exhibitions, training programs, laboratory experiments, and professional videos. In close alignment with the core interests of the Center, and under strong leadership to streamline the program and optimize its direction, COEC has successfully improved the public understanding of the impact of the environment on health, by connecting the impact of exposures to basic cellular processes.
The specific aims for this next funding period are thus focused on activities that will continue to teach fundamental concepts in environmental health to community members of all ages, with emphasis on to students, teachers, health care professionals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Center Core Grants (P30)
Project #
5P30ES002109-33
Application #
8466327
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
33
Fiscal Year
2013
Total Cost
$192,444
Indirect Cost
$75,852
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Wadduwage, Dushan N; Kay, Jennifer; Singh, Vijay Raj et al. (2018) Automated fluorescence intensity and gradient analysis enables detection of rare fluorescent mutant cells deep within the tissue of RaDR mice. Sci Rep 8:12108
Jackson, Megan N; Oh, Seokjoon; Kaminsky, Corey J et al. (2018) Strong Electronic Coupling of Molecular Sites to Graphitic Electrodes via Pyrazine Conjugation. J Am Chem Soc 140:1004-1010
Chen, Percival Yang-Ting; Funk, Michael A; Brignole, Edward J et al. (2018) Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 293:10404-10412
Lieberman, Mia T; Madden, Carolyn M; Ma, Eric J et al. (2018) Evaluation of 6 Methods for Aerobic Bacterial Sanitization of Smartphones. J Am Assoc Lab Anim Sci 57:24-29
Edington, Collin D; Chen, Wen Li Kelly; Geishecker, Emily et al. (2018) Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci Rep 8:4530
Mannion, Anthony; Shen, Zeli; Feng, Yan et al. (2018) Gamma-glutamyltranspeptidase expression by Helicobacter saguini, an enterohepatic Helicobacter species isolated from cotton top tamarins with chronic colitis. Cell Microbiol :e12968
Tajai, Preechaya; Fedeles, Bogdan I; Suriyo, Tawit et al. (2018) An engineered cell line lacking OGG1 and MUTYH glycosylases implicates the accumulation of genomic 8-oxoguanine as the basis for paraquat mutagenicity. Free Radic Biol Med 116:64-72
Neumann, Wilma; Nolan, Elizabeth M (2018) Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics. J Biol Inorg Chem 23:1025-1036
Pereira, Gavin C; Sanchez, Laura; Schaughency, Paul M et al. (2018) Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 9:35
Wang, Lianrong; Jiang, Susu; Deng, Zixin et al. (2018) DNA phosphorothioate modification - a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev :

Showing the most recent 10 out of 970 publications