The Controlled Exposure Facility (CEF) Core provides expertise and facilities to conduct human and animal exposure studies. The Core is comprised of two technology units overseeing exposure chambers that individually provide controlled atmospheres to human subjects or small animals. The controlled environmental chambers share components of the pollutant generation systems, allowing for development of exposure conditions that recapitulate those encountered in both environmental and occupational settings. The goal of the human exposure unit is to provide accurate exposures of human subjects in a setting where many host and environmental factors can be rigorously controlled and where biological specimens can be collected for discovery of biological response indicators and mechanistic studies. The animal exposure unit provides consultation for conducting animal inhalation research in controlled exposure conditions recapitulating those in the human exposure chamber. The ability to generate different atmospheres with known pollutant concentrations in a controlled environment allows testing and calibration of devices that will be used for field and epidemiological studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Center Core Grants (P30)
Project #
2P30ES005022-21
Application #
7790090
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
21
Fiscal Year
2009
Total Cost
$88,875
Indirect Cost
Name
University of Medicine & Dentistry of NJ
Department
Type
DUNS #
617022384
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Cory-Slechta, D A; Allen, J L; Conrad, K et al. (2018) Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. Neurotoxicology 69:217-231
Joseph, Laurie B; Composto, Gabriella M; Perez, Roberto M et al. (2018) Sulfur mustard induced mast cell degranulation in mouse skin is inhibited by a novel anti-inflammatory and anticholinergic bifunctional prodrug. Toxicol Lett 293:77-81
Mamounis, Kyle J; Hernandez, Michelle R; Margolies, Nicholas et al. (2018) Interaction of 17?-estradiol and dietary fatty acids on energy and glucose homeostasis in female mice. Nutr Neurosci 21:715-728
Graber, Judith M; Chuang, Connie T; Ward, Carolyn L et al. (2018) Head and Neck Cancer in World Trade Center Responders: A Case Series. J Occup Environ Med 60:e439-e444
Stapleton, P A; McBride, C R; Yi, J et al. (2018) Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reprod Toxicol 78:20-28
Dai, Zhuqing; Feng, Simin; Liu, Anna et al. (2018) Anti-inflammatory effects of newly synthesized ?-galacto-oligosaccharides on dextran sulfate sodium-induced colitis in C57BL/6J mice. Food Res Int 109:350-357
Graber, Judith M; Alexander, Cora; Laumbach, Robert J et al. (2018) Per and polyfluoroalkyl substances (PFAS) blood levels after contamination of a community water supply and comparison with 2013-2014 NHANES. J Expo Sci Environ Epidemiol :
Feng, Simin; Dai, Zhuqing; Liu, Anna B et al. (2018) Intake of stigmasterol and ?-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1274-1284
Sagona, Jessica A; Weisel, Clifford; Meng, Qingyu (2018) Accuracy and practicality of a portable ozone monitor for personal exposure estimates. Atmos Environ (1994) 175:120-126
Mauro, T; Hao, L; Pop, L C et al. (2018) Circulating zearalenone and its metabolites differ in women due to body mass index and food intake. Food Chem Toxicol 116:227-232

Showing the most recent 10 out of 819 publications