The objectives of the Vision Research Center grant are: (1) to increase knowledge concerning normal vision; (2) to apply this knowledge to the preservation and restoration of human vision. To achieve these overall scientific goals, a multidisciplinary research program has been developed. Related to the eye and vision, this program consists of the following major basic science and clinical research components: Molecular Biology, Biophysics, Electrophysiology, Microbiology and Immunology, Ophthalmic Pathology, Ophthalmology--Retina and Lens Disease Research, Pediatric Ophthalmology Research and Vision-Related Genetic Disorders. Appropriately interrelated, the major components of this program apply a wide spectrum of laboratory and clinical methods of investigAtion to an extensive array of research projects. Support is requested for the following Core modules: Biochemistry, Pathology, Electron Microscopy, Machine Shop, Clinical Investigation, and Administration.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY000331-24
Application #
3102393
Study Section
Vision Research and Training Committee (VSN)
Project Start
1978-11-01
Project End
1994-02-28
Budget Start
1990-03-01
Budget End
1991-02-28
Support Year
24
Fiscal Year
1990
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
Schools of Medicine
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Glasgow, Ben J; Abduragimov, Adil R (2018) Data on Orphan tear lipid analogs, synthesis and binding to tear lipocalin. Data Brief 18:999-1004
Sarria, Ignacio; Cao, Yan; Wang, Yuchen et al. (2018) LRIT1 Modulates Adaptive Changes in Synaptic Communication of Cone Photoreceptors. Cell Rep 22:3562-3573
Peng, Yingqian; Baulier, Edouard; Ke, Yifeng et al. (2018) Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Müller cells. PLoS One 13:e0194004
Clark, Robert A; Demer, Joseph L (2018) The Globe's Eccentric Rotational Axis: Why Medial Rectus Surgery Is More Potent than Lateral Rectus Surgery. Ophthalmology 125:1234-1238
Van Eps, Ned; Altenbach, Christian; Caro, Lydia N et al. (2018) Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Proc Natl Acad Sci U S A 115:2383-2388
Shin, Andrew; Park, Joseph; Demer, Joseph L (2018) Opto-mechanical characterization of sclera by polarization sensitive optical coherence tomography. J Biomech 72:173-179
Volland, Stefanie; Williams, David S (2018) Preservation of Photoreceptor Nanostructure for Electron Tomography Using Transcardiac Perfusion Followed by High-Pressure Freezing and Freeze-Substitution. Adv Exp Med Biol 1074:603-607
Kintzer, Alexander F; Green, Evan M; Dominik, Pawel K et al. (2018) Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc Natl Acad Sci U S A 115:E9095-E9104
Bergdoll, Lucie A; Lerch, Michael T; Patrick, John W et al. (2018) Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1. Proc Natl Acad Sci U S A 115:E172-E179
Vahedi, Farnoosh; Chung, Doug D; Gee, Katherine M et al. (2018) Epithelial Recurrent Erosion Dystrophy Secondary to COL17A1 c.3156C>T Mutation in a Non-white Family. Cornea 37:909-911

Showing the most recent 10 out of 289 publications