Investigators who have achieved independent National Eye Institute (NEI) funding will be provided with additional shared support to enhance their own and University of Washington's capability for conducting vision research. Collaborative studies will be facilitated, and scientists will be attracted to research on the visual system by the presence of this shared support. A modular organizational structure will be maintained, with each module devoted to a specific activity that would be impractical or less efficient to support on an individual research grant. Each module will support a service or resource that enhances or facilitates the research efforts of a CORE group of investigators, each having independent funding. Some sharing of resources and services with non-NEI-funded collaborators and with investigators new to vision research will occur. Junior researchers will also have access to these facilities to improve their ability to attain independent NEI funding. Proposed modules include: Biochemistry/Immunology (B/l), Genotyping/Phenotyping (G/P), Morphological Imaging (M/l), and Psychophysics/Physiology (PIP). Areas of investigation include retinal and choroidal diseases, corneal wound healing, corneal diseases, lens and cataract, glaucoma, strabismus, amblyopia, visual processing, and ocular development. Specific disciplines that will be brought to bear on these problems include: behavioral studies, biochemistry, biostatistics, molecular biology, cell biology, proteomics, immunology, microscopy, microbiology, morphometry, neurophysiology, and pathology. This project will elucidate basic mechanisms that underlie the function of the eye and the visual system and apply this knowledge and other information to the solution of problems in vision and ophthalmology. Collaboration among investigators from the University of Washington and elsewhere will be promoted. This proposal will improve the effectiveness of funding available on individual research project grants.
Pepple, Kathryn L; Wilson, Leslie; Van Gelder, Russell N (2018) Comparison of Aqueous and Vitreous Lymphocyte Populations From Two Rat Models of Experimental Uveitis. Invest Ophthalmol Vis Sci 59:2504-2511 |
Lee, Cecilia S; Lee, Aaron Y; Akileswaran, Lakshmi et al. (2018) Determinants of Outcomes of Adenoviral Keratoconjunctivitis. Ophthalmology 125:1344-1353 |
Coates, Daniel R; Levi, Dennis M; Touch, Phanith et al. (2018) Foveal Crowding Resolved. Sci Rep 8:9177 |
Gordon, Sharona E; Munari, Mika; Zagotta, William N (2018) Visualizing conformational dynamics of proteins in solution and at the cell membrane. Elife 7: |
Pedersen, Hilde R; Hagen, Lene A; Landsend, Erlend C S et al. (2018) Color Vision in Aniridia. Invest Ophthalmol Vis Sci 59:2142-2152 |
Chao, Cecilia; Akileswaran, Lakshmi; Cooke Bailey, Jessica N et al. (2018) Potential Role of Ocular Microbiome, Host Genotype, Tear Cytokines, and Environmental Factors in Corneal Infiltrative Events in Contact Lens Wearers. Invest Ophthalmol Vis Sci 59:5752-5761 |
Yu, Wan-Qing; El-Danaf, Rana N; Okawa, Haruhisa et al. (2018) Synaptic Convergence Patterns onto Retinal Ganglion Cells Are Preserved despite Topographic Variation in Pre- and Postsynaptic Territories. Cell Rep 25:2017-2026.e3 |
Cabrera, Michelle T; Enyedi, Laura B; Ding, Leona et al. (2018) Sexual Harassment in Ophthalmology: A Survey Study. Ophthalmology : |
Du, Jianhai; An, Jie; Linton, Jonathan D et al. (2018) How Excessive cGMP Impacts Metabolic Proteins in Retinas at the Onset of Degeneration. Adv Exp Med Biol 1074:289-295 |
Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric (2018) Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion. Neural Comput 30:1209-1257 |
Showing the most recent 10 out of 556 publications