The Molecular Biology Module provides services involved with the production of transgenic, knock-out and knock-in mice and construction of gene constructs used for an array of applications (e.g., in situ hybridization probes), preparation of DNA clones and probes, and consultation or direct service for the design of polymerase chain reaction primers and optimization of reaction conditions. The module also provides limited- scale DNA sequencing, consultation or direct services for phosphorimaging and flow cytometry for cell analysis, and maintenance and oversight of shared molecular biology instrumentation. The module occupies a new laboratory designed for its exclusive use. The module is staffed by two full-time molecular biology technicians with advanced skills in molecular cloning, DNA manipulations, animal husbandry and microinjection. The services of this module enhance the environment for research by making molecular biology an accessible tool for any member of the vision core group. The environment is further enhanced by providing training and support in the use of modern shared instrumentation for molecular biology, including the STORM phosphorimager and Beckman Coulter FC500 flow cytometer.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY002687-29
Application #
7385124
Study Section
Special Emphasis Panel (ZEY1)
Project Start
Project End
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
29
Fiscal Year
2007
Total Cost
$223,544
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Kiser, Philip D; Zhang, Jianye; Sharma, Aditya et al. (2018) Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. J Gen Physiol 150:571-590
Soto, Florentina; Zhao, Lei; Kerschensteiner, Daniel (2018) Synapse maintenance and restoration in the retina by NGL2. Elife 7:
Ban, Norimitsu; Siegfried, Carla J; Apte, Rajendra S (2018) Monitoring Neurodegeneration in Glaucoma: Therapeutic Implications. Trends Mol Med 24:7-17
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. J Lipid Res 59:1414-1423
Buckingham, Erin M; Foley, Maria A; Grose, Charles et al. (2018) Identification of Herpes Zoster-Associated Temporal Arteritis Among Cases of Giant Cell Arteritis. Am J Ophthalmol 187:51-60
Stunkel, Leanne; Kung, Nathan H; Wilson, Bradley et al. (2018) Incidence and Causes of Overdiagnosis of Optic Neuritis. JAMA Ophthalmol 136:76-81
Gordon, Mae O; Kass, Michael A (2018) What We Have Learned From the Ocular Hypertension Treatment Study. Am J Ophthalmol 189:xxiv-xxvii
Andley, Usha P; Tycksen, Eric; McGlasson-Naumann, Brittney N et al. (2018) Probing the changes in gene expression due to ?-crystallin mutations in mouse models of hereditary human cataract. PLoS One 13:e0190817
Vinberg, Frans; Peshenko, Igor V; Chen, Jeannie et al. (2018) Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors. J Biol Chem 293:7457-7465
Gordon, Mae O; Higginbotham, Eve J; Heuer, Dale K et al. (2018) Assessment of the Impact of an Endpoint Committee in the Ocular Hypertension Treatment Study. Am J Ophthalmol :

Showing the most recent 10 out of 696 publications