The primary objective of this application is to provide NEI-funded vision scientists with state-of-the-art, shared technical support to enhance their individual research efforts. A secondary goal is to foster collaborative research, as a means of attracting scientists who currently do not work on the visual system to the field of eye research. These objectives will be achieved through the activity of four core modules, which will provide the following services: 1. A Morphology &Imaging module will provide technical support and expertise in the morphological analysis of ocular cells and tissues at the light and electron microscopic level. 2. A Visual Function Testing module will provide equipment and technical expertise for the assessment of visual performance in experimental animal model systems. 3. A Molecular Genetics module will provide assistance and expertise in the production of transgenic/knockout/knockin mice, construction of gene constructs, and preparation of DNA clones and probes. 4. A Biostatistics module will assist in the design and implementation of pilot studies, provide statistical and methodological expertise in study design, assure the validity of statistical analyses and reported results, and assist in training residents and clinicians in areas of research methodology. Provision of these support services and resources will greatly enhance the research capabilities of investigators at Washington University and will facilitate collaboration among new and established vision scientists.
The vision research community at Washington Universtity is large and diverse and makes a substantial contribution to the diagnosis and treatment of blinding eye disease. The provision of shared resources and technical support through the Vision Science Core allows investigators to achieve more progress on their NEI-funded projects than would have been possible otherwise.
De Maria, Alicia; Zhao, Haiqing; Bassnett, Steven (2018) Expression of potassium-dependent sodium-calcium exchanger in the murine lens. Exp Eye Res 167:18-24 |
Lin, Joseph B; Sene, Abdoulaye; Wiley, Luke A et al. (2018) WNT7A/B promote choroidal neovascularization. Exp Eye Res 174:107-112 |
Kiser, Philip D; Zhang, Jianye; Sharma, Aditya et al. (2018) Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. J Gen Physiol 150:571-590 |
Soto, Florentina; Zhao, Lei; Kerschensteiner, Daniel (2018) Synapse maintenance and restoration in the retina by NGL2. Elife 7: |
Ban, Norimitsu; Siegfried, Carla J; Apte, Rajendra S (2018) Monitoring Neurodegeneration in Glaucoma: Therapeutic Implications. Trends Mol Med 24:7-17 |
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. J Lipid Res 59:1414-1423 |
Buckingham, Erin M; Foley, Maria A; Grose, Charles et al. (2018) Identification of Herpes Zoster-Associated Temporal Arteritis Among Cases of Giant Cell Arteritis. Am J Ophthalmol 187:51-60 |
Stunkel, Leanne; Kung, Nathan H; Wilson, Bradley et al. (2018) Incidence and Causes of Overdiagnosis of Optic Neuritis. JAMA Ophthalmol 136:76-81 |
Gordon, Mae O; Kass, Michael A (2018) What We Have Learned From the Ocular Hypertension Treatment Study. Am J Ophthalmol 189:xxiv-xxvii |
Andley, Usha P; Tycksen, Eric; McGlasson-Naumann, Brittney N et al. (2018) Probing the changes in gene expression due to ?-crystallin mutations in mouse models of hereditary human cataract. PLoS One 13:e0190817 |
Showing the most recent 10 out of 696 publications