Funds are requested by 36 vision scientists to support 4 research modules to facilitate and enhance interaction among the vision scientists in the various disciplines represented at the Schepens Eye Research Institute. The modules will extend endeavors of individual research programs by providing collaborative opportunities for projects in which investigators do not have expertise, funding, or technical capabilities. The modules are: Morphology, Animal Resource, Laboratory Computer Applications and Flow Cytometry. The Morphology Module will provide light and electron microscopy, confocal microscopy and image analysis capabilities and tissue preparation for histochemistry and in situ hybridization, thereby increasing the availability of morphologic techniques to biochemists, pharmacologists, cell and molecular biologists, and immunologists who need correlative morphologic data for their research. The module houses and maintains large and expensive shared equipment for morphological work and is available to all members of the Core. The Animal Resource Module will provide expertise and assistance in animal surgical techniques and postoperative care, administration of anesthesia, drugs, and medications. In addition, it will also provide for daily animal husbandry which is required to maintain our high standards for animal housing, sanitation, and veterinary care. The Laboratory Computer Applications Module will provide support to individual and collaborative efforts by assisting in interfacing of microcomputers with lab equipment and by developing software for gathering, processing, and analyzing experimental data by microcomputer systems. The module will also provide assistance to projects involving image processing and analysis from several types of equipment sources. The module interacts very actively with the Morphology and Flow Cytometry Modules supporting computer-based technology. The Flow Cytometry Module is a centralized service providing principal investigators and collaborators access to equipment and technical support for flow cytometry and cell sorting. Available to the investigators are the Coulter Epics XL flow cytometer and the Coulter ELITE EPICS ESP fluorescent cell sorter. The modules are staffed by personnel with specialized training in the respective fields. Each module is under the immediate supervision of an established, experienced investigator(s). The module heads constitute the Core Grant Committee, which is responsible to the Director of Research.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY003790-18
Application #
2710838
Study Section
Special Emphasis Panel (SRC (01))
Project Start
1981-08-01
Project End
2001-07-31
Budget Start
1998-08-01
Budget End
1999-07-31
Support Year
18
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Schepens Eye Research Institute
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02114
Reeves, Adam; Grayhem, Rebecca; Hwang, Alex D (2018) Rapid Adaptation of Night Vision. Front Psychol 9:8
Jung, Jae-Hyun; Peli, Eli (2018) Field Expansion for Acquired Monocular Vision Using a Multiplexing Prism. Optom Vis Sci 95:814-828
García-Caballero, Cristina; Lieppman, Burke; Arranz-Romera, Alicia et al. (2018) Photoreceptor preservation induced by intravitreal controlled delivery of GDNF and GDNF/melatonin in rhodopsin knockout mice. Mol Vis 24:733-745
Gupta, Priya R; Pendse, Nachiket; Greenwald, Scott H et al. (2018) Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects. Hum Mol Genet 27:2012-2024
Tan, Xuhua; Chen, Yihe; Foulsham, William et al. (2018) The immunoregulatory role of corneal epithelium-derived thrombospondin-1 in dry eye disease. Ocul Surf 16:470-477
Maurer, Anna C; Pacouret, Simon; Cepeda Diaz, Ana Karla et al. (2018) The Assembly-Activating Protein Promotes Stability and Interactions between AAV's Viral Proteins to Nucleate Capsid Assembly. Cell Rep 23:1817-1830
Stern, Jeffrey H; Tian, Yangzi; Funderburgh, James et al. (2018) Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 22:834-849
Sasamoto, Yuzuru; Ksander, Bruce R; Frank, Markus H et al. (2018) Repairing the corneal epithelium using limbal stem cells or alternative cell-based therapies. Expert Opin Biol Ther 18:505-513
Hudry, Eloise; Andres-Mateos, Eva; Lerner, Eli P et al. (2018) Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Mol Ther Methods Clin Dev 10:197-209
Bhattacharya, Sumit; García-Posadas, Laura; Hodges, Robin R et al. (2018) Alteration in nerves and neurotransmitter stimulation of lacrimal gland secretion in the TSP-1-/- mouse model of aqueous deficiency dry eye. Mucosal Immunol 11:1138-1148

Showing the most recent 10 out of 164 publications