The Morphology Module has three primary functions. First, the module provides technical assistance for light, electron, and confocal microscopy. Services include: paraffin, methacrylate, epoxy, and frozen sectioning; and complete transmission electron microscopy and field emission scanning electron microscopy services. Second, the module is an equipment resource, housing a new laser microdissection system, two confocal microscopes, automated histology and electron microscopy tissue processors, ultramicrotomes, cryostats, various fluorescence and phase microscopes, and scanners and printers to process digital images. Third, the module provides consultation for various histology, electron microscopy and microscopy procedures and troubleshooting, and training on all microscopes.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY003790-39
Application #
9968395
Study Section
Special Emphasis Panel (ZEY1)
Project Start
1981-08-01
Project End
2022-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
39
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Schepens Eye Research Institute
Department
Type
DUNS #
073826000
City
Boston
State
MA
Country
United States
Zip Code
02114
Reeves, Adam; Grayhem, Rebecca; Hwang, Alex D (2018) Rapid Adaptation of Night Vision. Front Psychol 9:8
Jung, Jae-Hyun; Peli, Eli (2018) Field Expansion for Acquired Monocular Vision Using a Multiplexing Prism. Optom Vis Sci 95:814-828
García-Caballero, Cristina; Lieppman, Burke; Arranz-Romera, Alicia et al. (2018) Photoreceptor preservation induced by intravitreal controlled delivery of GDNF and GDNF/melatonin in rhodopsin knockout mice. Mol Vis 24:733-745
Gupta, Priya R; Pendse, Nachiket; Greenwald, Scott H et al. (2018) Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects. Hum Mol Genet 27:2012-2024
Tan, Xuhua; Chen, Yihe; Foulsham, William et al. (2018) The immunoregulatory role of corneal epithelium-derived thrombospondin-1 in dry eye disease. Ocul Surf 16:470-477
Maurer, Anna C; Pacouret, Simon; Cepeda Diaz, Ana Karla et al. (2018) The Assembly-Activating Protein Promotes Stability and Interactions between AAV's Viral Proteins to Nucleate Capsid Assembly. Cell Rep 23:1817-1830
Stern, Jeffrey H; Tian, Yangzi; Funderburgh, James et al. (2018) Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 22:834-849
Sasamoto, Yuzuru; Ksander, Bruce R; Frank, Markus H et al. (2018) Repairing the corneal epithelium using limbal stem cells or alternative cell-based therapies. Expert Opin Biol Ther 18:505-513
Hudry, Eloise; Andres-Mateos, Eva; Lerner, Eli P et al. (2018) Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Mol Ther Methods Clin Dev 10:197-209
Bhattacharya, Sumit; García-Posadas, Laura; Hodges, Robin R et al. (2018) Alteration in nerves and neurotransmitter stimulation of lacrimal gland secretion in the TSP-1-/- mouse model of aqueous deficiency dry eye. Mucosal Immunol 11:1138-1148

Showing the most recent 10 out of 164 publications