Morphology and Image Processing Module Abstract The objective of the Morphology and Image Processing Module is to enhance the capabilities of individual investigators to conduct cutting edge research in the vision sciences.
Our Aims are: 1) to provide resources, support and training required for conducting morphological studies and image analysis at the level exceeding the capabilities of any individual laboratory; 2) to promote collegiality across the community of vision scientists through sharing resources, techniques and expertise; and 3) to engage colleagues into conducting vision research, including support of the next generation of basic and clinician scientists. To achieve these Aims, this Module will support sophisticated facilities equipped with state-of-the-art microscopes and other imaging instruments; microtomes and histology tools; and custom-built software and data processing resources for image analysis. The Module will be supervised and operated by highly experienced personnel, with expertise in conducting a broad array of tissue preparation, image acquisition and automated data processing methodologies. These shared resources will open new research possibilities for both experienced and novice users, and will serve as a platform for fostering interactions among a broad swath of our research community.

National Institute of Health (NIH)
National Eye Institute (NEI)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZEY1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Cunefare, David; Langlo, Christopher S; Patterson, Emily J et al. (2018) Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia. Biomed Opt Express 9:3740-3756
Berry, Duncan E; Grewal, Dilraj S; Mruthyunjaya, Prithvi (2018) Conjunctival Dehiscence and Scleral Necrosis following Iodine-125 Plaque Brachytherapy for Uveal Melanoma: A Report of 3 Cases. Ocul Oncol Pathol 4:291-296
Wang, Ke; Li, Guorong; Read, A Thomas et al. (2018) The relationship between outflow resistance and trabecular meshwork stiffness in mice. Sci Rep 8:5848
Sharif, Ali S; Yu, Dongmei; Loertscher, Stuart et al. (2018) C8ORF37 Is Required for Photoreceptor Outer Segment Disc Morphogenesis by Maintaining Outer Segment Membrane Protein Homeostasis. J Neurosci 38:3160-3176
Yiu, Glenn; Wang, Zhe; Munevar, Christian et al. (2018) Comparison of chorioretinal layers in rhesus macaques using spectral-domain optical coherence tomography and high-resolution histological sections. Exp Eye Res 168:69-76
Li, Guorong; Torrejon, Karen Y; Unser, Andrea M et al. (2018) Trabodenoson, an Adenosine Mimetic With A1 Receptor Selectivity Lowers Intraocular Pressure by Increasing Conventional Outflow Facility in Mice. Invest Ophthalmol Vis Sci 59:383-392
Willoughby, Alex S; Vuong, Vivian S; Cunefare, David et al. (2018) Choroidal Changes After Suprachoroidal Injection of Triamcinolone Acetonide in Eyes With Macular Edema Secondary to Retinal Vein Occlusion. Am J Ophthalmol 186:144-151
Soltanian-Zadeh, Somayyeh; Gong, Yiyang; Farsiu, Sina (2018) Information-Theoretic Approach and Fundamental Limits of Resolving Two Closely Timed Neuronal Spikes in Mouse Brain Calcium Imaging. IEEE Trans Biomed Eng 65:2428-2439
Smit-McBride, Zeljka; Nguyen, Johnny; Elliott, Garrett W et al. (2018) Effects of aging and environmental tobacco smoke exposure on ocular and plasma circulatory microRNAs in the Rhesus macaque. Mol Vis 24:633-646
Lobanova, Ekaterina S; Finkelstein, Stella; Li, Jing et al. (2018) Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nat Commun 9:1738

Showing the most recent 10 out of 437 publications