Module Use and Impact A major function of the MBM Module is to provide access to and training for small and large equipment that would be impractical for a single laboratory to acquire or maintain. The Module maintains shared equipment in good-working order, ensures fair access according to Core Center priorities, and assists in the acquisition of new equipment. The Molecular Biology Module also provides a range of services designed to expand the molecular biology capabilities of vision researchers and make their research activities more efficient. These services range from providing assistance with DNA cloning to aiding in the design, execution and analysis of complex experiments. The majority of these services facilitate research in one of two broad categories: gene expression analysis and manipulation of gene expression. The MBM provides technical services that complement and expand upon services provided by larger campus core facilities. It also provides a repository of molecular biology techniques and reagents that can be efficiently shared by a cadre of vision researchers. The University of Michigan Medical School (UMMS) boasts its outstanding Biomedical Research Core Facilities (www.med.umich.edu/brcf/index.htm), providing state-of-the-art genomics, transcriptomics, proteomics, metabolomics, bioinformatics, viral vector, and transgenic animal production services. However, effective utilization of these core technologies involves relative sophistication in experimental design, sample preparation, data set analysis, quantitative RT-PCR (qRT-PCR) validation of mRNA expression, vector design, DNA cloning, plasmid construction, and genotyping assay development. By providing these services, the Molecular Biology Module facilitates the interaction of our investigators with the UMMS facilities. While the economics of scale dictate that duplication of these services would be cost-ineffective, the MBM provides an additional economics of repetition, alleviating the need for each vision research laboratory to adopt the tools necessary to utilize core technologies and interpret the data provided. Dr. Reed provides expertise in analytical and statistical analysis for experimental design, power estimation, bioinformatics, and investigations of complex data sets.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY007003-26
Application #
8434349
Study Section
Special Emphasis Panel (ZEY1-VSN (10))
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
26
Fiscal Year
2012
Total Cost
$95,968
Indirect Cost
$34,252
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Puro, Donald G (2018) Role of ion channels in the functional response of conjunctival goblet cells to dry eye. Am J Physiol Cell Physiol 315:C236-C246
Zhang, Wei; Li, Yanxiu; Nguyen, Van Phuc et al. (2018) High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization. Light Sci Appl 7:103
Schroeder, Melanie M; Harrison, Krystal R; Jaeckel, Elizabeth R et al. (2018) The Roles of Rods, Cones, and Melanopsin in Photoresponses of M4 Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) and Optokinetic Visual Behavior. Front Cell Neurosci 12:203
Nahomi, Rooban B; Sampathkumar, Sruthi; Myers, Angela M et al. (2018) The Absence of Indoleamine 2,3-Dioxygenase Inhibits Retinal Capillary Degeneration in Diabetic Mice. Invest Ophthalmol Vis Sci 59:2042-2053
Kady, Nermin M; Liu, Xuwen; Lydic, Todd A et al. (2018) ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability. Diabetes 67:769-781
Ruebsam, Anne; Dulle, Jennifer E; Myers, Angela M et al. (2018) A specific phosphorylation regulates the protective role of ?A-crystallin in diabetes. JCI Insight 3:
Ramos, Carla J; Lin, Chengmao; Liu, Xuwen et al. (2018) The EPAC-Rap1 pathway prevents and reverses cytokine-induced retinal vascular permeability. J Biol Chem 293:717-730
Tian, Chao; Zhang, Wei; Nguyen, Van Phuc et al. (2018) Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes. J Vis Exp :
Fernando, Roshini; Grisolia, Ana Beatriz Diniz; Lu, Yan et al. (2018) Slit2 Modulates the Inflammatory Phenotype of Orbit-Infiltrating Fibrocytes in Graves' Disease. J Immunol 200:3942-3949
Zhang, Haonan; Xie, Xinyi; Li, Jia et al. (2018) Removal of choroidal vasculature using concurrently applied ultrasound bursts and nanosecond laser pulses. Sci Rep 8:12848

Showing the most recent 10 out of 214 publications