? MOLECULAR CONSTRUCT AND PACKAGING CORE The Molecular Construct and Packaging Core (MCPC) provides 1) molecular construct design and production; 2) packaging of Lentivirus and AAV vectors; and 3) repository, consultation and training in molecular methods to the UC Davis vision science community. The MCPC generates high-quality plasmids and viral vectors with short turn-around times, efficiently and flexibly serving the project goals of our investigators. By being familiar with the needs and goals of individual labs, the MCPC also helps to promote collaboration and cross-fertilization by encouraging the sharing of molecular reagents and knowledge between investigators with similar needs or goals. Because this facility is the only such molecular or viral core facility at UC Davis, this module provides essential support for cell and molecular biology approaches in the vision sciences.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY012576-21
Application #
9795055
Study Section
Special Emphasis Panel (ZEY1)
Project Start
Project End
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
21
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Azimi, Mina; Le, Tien T; Brown, Nadean L (2018) Presenilin gene function and Notch signaling feedback regulation in the developing mouse lens. Differentiation 102:40-52
Thomasy, Sara M; Raghunathan, Vijay Krishna; Miyagi, Hidetaka et al. (2018) Latrunculin B and substratum stiffness regulate corneal fibroblast to myofibroblast transformation. Exp Eye Res 170:101-107
Miyagi, Hidetaka; Jalilian, Iman; Murphy, Christopher J et al. (2018) Modulation of human corneal stromal cell differentiation by hepatocyte growth factor and substratum compliance. Exp Eye Res 176:235-242
Partida, Gloria J; Fasoli, Anna; Fogli Iseppe, Alex et al. (2018) Autophosphorylated CaMKII Facilitates Spike Propagation in Rat Optic Nerve. J Neurosci 38:8087-8105
Swarup, Aditi; Bell, Brent A; Du, Jianhai et al. (2018) Deletion of GLUT1 in mouse lens epithelium leads to cataract formation. Exp Eye Res 172:45-53
Kowalchuk, Angelica M; Maurer, Kate A; Shoja-Taheri, Farnaz et al. (2018) Requirements for Neurogenin2 during mouse postnatal retinal neurogenesis. Dev Biol 442:220-235
Usrey, W Martin; Sherman, S Murray (2018) Corticofugal circuits: Communication lines from the cortex to the rest of the brain. J Comp Neurol :
Failor, Samuel Wilson; Ng, Arash; Cheng, Hwai-Jong (2018) Monocular enucleation alters retinal waves in the surviving eye. Neural Dev 13:4
Yiu, Glenn; Wang, Zhe; Munevar, Christian et al. (2018) Comparison of chorioretinal layers in rhesus macaques using spectral-domain optical coherence tomography and high-resolution histological sections. Exp Eye Res 168:69-76
Smit-McBride, Zeljka; Nguyen, Johnny; Elliott, Garrett W et al. (2018) Effects of aging and environmental tobacco smoke exposure on ocular and plasma circulatory microRNAs in the Rhesus macaque. Mol Vis 24:633-646

Showing the most recent 10 out of 251 publications