The Morphology, Imaging and Instrumentation Core (B) provides the space, facilities, supervision, and training for investigators who use histological methods, and advanced imaging technology to answer research questions. This core builds on research investments from NIH/NCRR Shared Instrumentation Grants, NIH/NCRR COBRE Phase I and II programs, and an NSF Research Infrastructure Improvement Award. Core B provides skilled personnel capable of performing and training users in highly specialized techniques, such as confocal imaging, 3D reconstruction, immunohistochemistry, in situ hybridization, cell sorting, ultrasound, and image analysis;and offers advice with experimental design and analysis of data.
Specific aims are: (a) to maintain the resources for safe and effective use by properly trained research personnel;(b) to assist research projects perform high quality and state-of-the-art image acquisition and data analyses;(c) to help in the design and performance of immunohistochemical and in situ hybridization analyses;(d) to provide a state-of-the-art cell sorting service, and (e) provide programs of outreach and education to investigators using methods and instrumentation available in the core. Faculty and student investigators have access to core facilities to process tissue and operate the histological tools, microscopes, and analysis computers, and are assisted by core staff concerning experimental design, data interpretation and technical information to best utilize facilities and instrumentation. The Core has a 15-year record of providing state-of-the-art service and training to investigators at MUSC and throughout South Carolina. Core staff participates in a weeklong training workshop on confocal microscopy (since 2004), acts as a Beckman Coulter Center of Excellence for development of flow cytometry, and has strong interactions with imaging cores in COBREs at Clemson (Biomaterials) and the University of South Carolina (Colon Cancer).

Public Health Relevance

Cardiovascular diseases are the primary cause of morbidity and mortality in the U.S. This Center of Biomedical Research Excellence conducts research in the mechanisms of normal and abnormal heart development, the developmental basis of adult cardiovascular diseases, and the application of the principles of normal development to guide stem-cell based, tissue regeneration or replacement. The Morphology, Imaging and Instrumentation Core provides advanced imaging and histology support to this effort.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103342-02
Application #
8517764
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
2
Fiscal Year
2013
Total Cost
$284,676
Indirect Cost
$91,675
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Panganiban, Clarisse H; Barth, Jeremy L; Darbelli, Lama et al. (2018) Noise-induced dysregulation of Quaking RNA binding proteins contributes to auditory nerve demyelination and hearing loss. J Neurosci :
Yu, Jin; Zhu, Hong; Taheri, Saeid et al. (2018) Impact of nutrition on inflammation, tauopathy, and behavioral outcomes from chronic traumatic encephalopathy. J Neuroinflammation 15:277
Alawieh, Ali; Langley, E Farris; Weber, Shannon et al. (2018) Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci :
Sun, Bowen; Wang, Geng; Liu, Huidong et al. (2018) Oridonin inhibits aberrant AKT activation in breast cancer. Oncotarget 9:23878-23889
Noble, Kenyaria V; Reyzer, Michelle L; Barth, Jeremy L et al. (2018) Use of Proteomic Imaging Coupled With Transcriptomic Analysis to Identify Biomolecules Responsive to Cochlear Injury. Front Mol Neurosci 11:243
Beiko, Tatsiana; Janech, Michael G; Alekseyenko, Alexander V et al. (2017) Serum Proteins Associated with Emphysema Progression in Severe Alpha-1 Antitrypsin Deficiency. Chronic Obstr Pulm Dis 4:204-216
Ghatak, Shibnath; Markwald, Roger R; Hascall, Vincent C et al. (2017) Transforming growth factor ?1 (TGF?1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 292:10465-10489
Ghatak, Shibnath; Hascall, Vincent C; Markwald, Roger R et al. (2017) Transforming growth factor ?1 (TGF?1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 292:10490-10519
Richards, Dylan J; Coyle, Robert C; Tan, Yu et al. (2017) Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials 142:112-123
Brown, LaShardai N; Xing, Yazhi; Noble, Kenyaria V et al. (2017) Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea. Front Mol Neurosci 10:407

Showing the most recent 10 out of 71 publications