The Administrative Core is responsible for the structural organization of COBRE. It determines the guidelines for the administration of the individual components of COBRE and for their integration into the overall operation of the Center. The Core oversees the day-to-day operation including the practical implementation of the principles upon which the Center is built. The COBRE PI/PD has the overall responsibility for the grant. She is assisted by the Internal Steering Committee (ISC), whose role is to provide the input and guidance into making strategic management decisions, including conflict resolution. The External Advisory Committee (EAC) provides scientific oversight ofthe Center and is responsible for the review of proposals for the Pilot Research Subproject Program. The COBRE Program Coordinator is responsible for overseeing the research instrumentation cores. The Administrative Core personnel, PI/PD and Program Coordinator, with the assistance of the Internal Steering Committee, are responsible for coordinating and overseeing the annual research meetings, mentoring, and evaluation.

Public Health Relevance

The ability to develop advanced biomaterials with customized control over morphological, mechanical and biological properties will lead to significant advancement in biomedical fields. The Administrative Core will provide the organization framework upon which the COBRE will be built, to accomplish the scientific goals of the Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
1P30GM110758-01
Application #
8735397
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$209,700
Indirect Cost
$75,277
Name
University of Delaware
Department
Type
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Smith, Natalee J; Rohlfing, Katarina; Sawicki, Lisa A et al. (2018) Fast, irreversible modification of cysteines through strain releasing conjugate additions of cyclopropenyl ketones. Org Biomol Chem 16:2164-2169
Zhao, Jing; Konh, Mahsa; Teplyakov, Andrew (2018) Surface Chemistry of Thermal Dry Etching of Cobalt Thin Films Using Hexafluoroacetylacetone (hfacH). Appl Surf Sci 455:438-445
Garcia Garcia, Cristobal; Kiick, Kristi L (2018) Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater :
Paramasivam, Sivakumar; Gronenborn, Angela M; Polenova, Tatyana (2018) Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study. Solid State Nucl Magn Reson 92:1-6
Wu, Pengcheng; Yap, Glenn P A; Theopold, Klaus H (2018) Structure and Reactivity of Chromium(VI) Alkylidenes. J Am Chem Soc 140:7088-7091
Fritz, Matthew; Quinn, Caitlin M; Wang, Mingzhang et al. (2018) Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Phys Chem Chem Phys 20:9543-9553
Gupta, Rupal; Stringer, John; Struppe, Jochem et al. (2018) Direct detection and characterization of bioinorganic peroxo moieties in a vanadium complex by 17O solid-state NMR and density functional theory. Solid State Nucl Magn Reson 91:15-20
Liu, Jun; Chen, Qingqing; Rozovsky, Sharon (2018) Selenocysteine-Mediated Expressed Protein Ligation of SELENOM. Methods Mol Biol 1661:265-283
O'Brien, Jessica G K; Chintala, Srinivasa R; Fox, Joseph M (2018) Stereoselective Synthesis of Bicyclo[6.1.0]nonene Precursors of the Bioorthogonal Reagents s-TCO and BCN. J Org Chem 83:7500-7503
Burch, Jason M; Mashayekh, Siavash; Wykoff, Dennis D et al. (2018) Bacterial Derived Carbohydrates Bind Cyr1 and Trigger Hyphal Growth in Candida albicans. ACS Infect Dis 4:53-58

Showing the most recent 10 out of 177 publications