The Computational Modeling Core will focus on building, supporting, and extending the computational modalities used by COBRE Pi's for biomaterials synthesis and characterization. The Core Director, in conjunction with the Core Advisor will oversee daily operations of the Core, long-term planning for sustainability and growth, user training and support, and software/hardware management, and faculty mentoring/guidance in the context of using available resources. The COBRE cluster will integrate with the NSF MRl supported GPU (Graphics Processing Unit) cluster housed in the Chemistry and Biochemistry Department. During the course of this COBRE, we will plan to continue growing and updating the current cluster through replacement with 1) high-density (large core count) nodes with faster interconnects and 2) faster, adaptive, extensible storage capacities. We will anticipate increased user usage with newer faculty, and the CORE will support users with training via staff consultation, CORE director interactions with users, and numerous courses on campus to utilize the facilities. Proposed specific aims for the Computational Modeling Core are: 1) to provide reliable, flexible heterogeneous computational infrastructure (hardware, software, storage, networking) to support biomaterials design, synthesis, and characterization;2) to extend Computational capabilities to exploit Graphics Processing Units (GPU's) for biomaterials modeling;3) to develop a robust storage and archival infrastructure accommodating increasing data-storage loads incurred with faster hardware and additional users;and 4) to supply training for faculty, graduate students, post-doctoral researchers, and undergraduate students in contemporary and emerging high-performance computing paradigms.

Public Health Relevance

Biomaterials are important in many applications affecting human health, including delivering drugs or creating new body tissues following injury. Making and studying these materials at the scale of atoms and molecules is tremendously important in allowing us to design, modify, and ultimately understand how these materials work. This CORE will support and provide infrastructure for application and development of methods based on computers thatwill aid in understanding the properties of these advanced biomaterials.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
1P30GM110758-01
Application #
8735402
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$130,349
Indirect Cost
$46,792
Name
University of Delaware
Department
Type
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Li, Linqing; Stiadle, Jeanna M; Levendoski, Elizabeth E et al. (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106:2229-2242
Liao, Jennie; Guan, Weiye; Boscoe, Brian P et al. (2018) Transforming Benzylic Amines into Diarylmethanes: Cross-Couplings of Benzylic Pyridinium Salts via C-N Bond Activation. Org Lett 20:3030-3033
Lu, Manman; Sarkar, Sucharita; Wang, Mingzhang et al. (2018) 19F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. J Phys Chem B 122:6148-6155
Ovadia, Elisa M; Colby, David W; Kloxin, April M (2018) Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells. Biomater Sci 6:1358-1370
Kraus, Jodi; Gupta, Rupal; Yehl, Jenna et al. (2018) Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations. J Phys Chem B 122:2931-2939
Williams, Mackenzie G; Teplyakov, Andrew V (2018) Indirect photopatterning of functionalized organic monolayers via copper-catalyzed ""click chemistry"". Appl Surf Sci 447:535-541
Quinn, Caitlin M; Wang, Mingzhang; Polenova, Tatyana (2018) NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol Biol 1688:1-35
Bush, Timothy S; Yap, Glenn P A; Chain, William J (2018) Transformation of N, N-Dimethylaniline N-Oxides into Diverse Tetrahydroquinoline Scaffolds via Formal Povarov Reactions. Org Lett 20:5406-5409
Hadden, Jodi A; Perilla, Juan R (2018) All-atom virus simulations. Curr Opin Virol 31:82-91
Liu, Jun; Cheng, Rujin; Wu, Haifan et al. (2018) Building and Breaking Bonds via a Compact S-Propargyl-Cysteine to Chemically Control Enzymes and Modify Proteins. Angew Chem Int Ed Engl 57:12702-12706

Showing the most recent 10 out of 177 publications