The Computational Modeling Core will focus on building, supporting, and extending the computational modalities used by COBRE Pi's for biomaterials synthesis and characterization. The Core Director, in conjunction with the Core Advisor will oversee daily operations of the Core, long-term planning for sustainability and growth, user training and support, and software/hardware management, and faculty mentoring/guidance in the context of using available resources. The COBRE cluster will integrate with the NSF MRl supported GPU (Graphics Processing Unit) cluster housed in the Chemistry and Biochemistry Department. During the course of this COBRE, we will plan to continue growing and updating the current cluster through replacement with 1) high-density (large core count) nodes with faster interconnects and 2) faster, adaptive, extensible storage capacities. We will anticipate increased user usage with newer faculty, and the CORE will support users with training via staff consultation, CORE director interactions with users, and numerous courses on campus to utilize the facilities. Proposed specific aims for the Computational Modeling Core are: 1) to provide reliable, flexible heterogeneous computational infrastructure (hardware, software, storage, networking) to support biomaterials design, synthesis, and characterization;2) to extend Computational capabilities to exploit Graphics Processing Units (GPU's) for biomaterials modeling;3) to develop a robust storage and archival infrastructure accommodating increasing data-storage loads incurred with faster hardware and additional users;and 4) to supply training for faculty, graduate students, post-doctoral researchers, and undergraduate students in contemporary and emerging high-performance computing paradigms.

Public Health Relevance

Biomaterials are important in many applications affecting human health, including delivering drugs or creating new body tissues following injury. Making and studying these materials at the scale of atoms and molecules is tremendously important in allowing us to design, modify, and ultimately understand how these materials work. This CORE will support and provide infrastructure for application and development of methods based on computers thatwill aid in understanding the properties of these advanced biomaterials.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
1P30GM110758-01
Application #
8735402
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$130,349
Indirect Cost
$46,792
Name
University of Delaware
Department
Type
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Burch, Jason M; Mashayekh, Siavash; Wykoff, Dennis D et al. (2018) Bacterial Derived Carbohydrates Bind Cyr1 and Trigger Hyphal Growth in Candida albicans. ACS Infect Dis 4:53-58
O'Brien, Jessica G K; Chintala, Srinivasa R; Fox, Joseph M (2018) Stereoselective Synthesis of Bicyclo[6.1.0]nonene Precursors of the Bioorthogonal Reagents s-TCO and BCN. J Org Chem 83:7500-7503
McDonald, Nathan D; DeMeester, Kristen E; Lewis, Amanda L et al. (2018) Structural and functional characterization of a modified legionaminic acid involved in glycosylation of a bacterial lipopolysaccharide. J Biol Chem 293:19113-19126
Guan, Weiye; Liao, Jennie; Watson, Mary P (2018) Vinylation of Benzylic Amines via C-N Bond Functionalization of Benzylic Pyridinium Salts. Synthesis (Stuttg) 50:3231-3237
Hadden, Jodi A; Perilla, Juan R (2018) Molecular Dynamics Simulations of Protein-Drug Complexes: A Computational Protocol for Investigating the Interactions of Small-Molecule Therapeutics with Biological Targets and Biosensors. Methods Mol Biol 1762:245-270
Haider, Michael J; Zhang, Huixi Violet; Sinha, Nairiti et al. (2018) Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles. Soft Matter 14:5488-5496
Quinn, Caitlin M; Wang, Mingzhang; Fritz, Matthew P et al. (2018) Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5? identified by magic-angle spinning NMR and molecular dynamics simulations. Proc Natl Acad Sci U S A 115:11519-11524
Fang, Yinzhi; Zhang, Han; Huang, Zhen et al. (2018) Photochemical syntheses, transformations, and bioorthogonal chemistry of trans-cycloheptene and sila trans-cycloheptene Ag(i) complexes. Chem Sci 9:1953-1963
Potocny, Andrea M; Riley, Rachel S; O'Sullivan, Rachel K et al. (2018) Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorg Chem 57:10608-10615
Hadden, Jodi A; Perilla, Juan R; Schlicksup, Christopher John et al. (2018) All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. Elife 7:

Showing the most recent 10 out of 177 publications