We propose to continue the pilot project program that was initially established in phase 11 of our COBRE grant.
The aims ofthe pilot project program in Phase III are to initiate new projects and new collaborations in the area of biomaterials (Aim 1), to establish a mentoring program to train our junior faculty and expand the cadre of COBRE investigators (Aim 2), and to serve as a framework for planning and preparation of program project grants (Aim 3).
In Aim 1, the pilot project applications will be solicited from the broader University scientific community, including COBRE investigators. The research covered may include any topic consistent with the overall focus of Biomaterials COBRE, including design and synthesis, development of novel characterization methods, and translational research in biomaterials. Pilot projects are generally awarded for 1-2 years ($40,000-$50,000 direct costs per year). A typical pilot project grant will support stipends for research assistants, supplies and expenses. A two-stage review process will be implemented for project selection. External mail reviewers are selected by the Internal Steering Committee. The funding decisions are made by the External Advisory Committee, on the basis of the priority scores given by the external mail reviewers.
In Aim. 2, the pilot project program will remain a mechanism for mentoring, development, and support of our junior faculty. All pilot project junior faculty Pis are required to have one scientific mentor and to participate in the career development and grant writing workshops that will be hosted under the COBRE auspices.
In Aim 3, we will establish a framework for multi-investigator grants. Ideas for interdisciplinary large-scale applications will be developed at our annual research retreats and at joint workshops and symposia with other NIH-funded centers in Delaware (INBRE, other COBRE, and CTR).

Public Health Relevance

Significant scientific opportunities lie in the development of biomaterials that address contemporary societal needs, such as those for organ replacement and tissue regeneration, drug and gene delivery, and biocompatible and environmentally friendly technologies. To realize such matenals, novel approaches need to be constantly explored. The proposed pilot research program will provide support to initiate new research directions, establish new interdisciplinary collaborations, and expand the cadre of junior and established faculty to pursue promising new ideas and turn these into full-scale research projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
1P30GM110758-01
Application #
8735404
Study Section
Special Emphasis Panel (ZGM1-TWD-C (C3))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$273,000
Indirect Cost
$98,000
Name
University of Delaware
Department
Type
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Burch, Jason M; Mashayekh, Siavash; Wykoff, Dennis D et al. (2018) Bacterial Derived Carbohydrates Bind Cyr1 and Trigger Hyphal Growth in Candida albicans. ACS Infect Dis 4:53-58
O'Brien, Jessica G K; Chintala, Srinivasa R; Fox, Joseph M (2018) Stereoselective Synthesis of Bicyclo[6.1.0]nonene Precursors of the Bioorthogonal Reagents s-TCO and BCN. J Org Chem 83:7500-7503
McDonald, Nathan D; DeMeester, Kristen E; Lewis, Amanda L et al. (2018) Structural and functional characterization of a modified legionaminic acid involved in glycosylation of a bacterial lipopolysaccharide. J Biol Chem 293:19113-19126
Guan, Weiye; Liao, Jennie; Watson, Mary P (2018) Vinylation of Benzylic Amines via C-N Bond Functionalization of Benzylic Pyridinium Salts. Synthesis (Stuttg) 50:3231-3237
Hadden, Jodi A; Perilla, Juan R (2018) Molecular Dynamics Simulations of Protein-Drug Complexes: A Computational Protocol for Investigating the Interactions of Small-Molecule Therapeutics with Biological Targets and Biosensors. Methods Mol Biol 1762:245-270
Haider, Michael J; Zhang, Huixi Violet; Sinha, Nairiti et al. (2018) Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles. Soft Matter 14:5488-5496
Quinn, Caitlin M; Wang, Mingzhang; Fritz, Matthew P et al. (2018) Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5? identified by magic-angle spinning NMR and molecular dynamics simulations. Proc Natl Acad Sci U S A 115:11519-11524
Fang, Yinzhi; Zhang, Han; Huang, Zhen et al. (2018) Photochemical syntheses, transformations, and bioorthogonal chemistry of trans-cycloheptene and sila trans-cycloheptene Ag(i) complexes. Chem Sci 9:1953-1963
Potocny, Andrea M; Riley, Rachel S; O'Sullivan, Rachel K et al. (2018) Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorg Chem 57:10608-10615
Hadden, Jodi A; Perilla, Juan R; Schlicksup, Christopher John et al. (2018) All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. Elife 7:

Showing the most recent 10 out of 177 publications