The Single Cell Molecular Expression Core (Core C) provides COBRE/INBRE investigators and other researchers in the Nevada System of High Education (NSHE) with the following services: 1) automated single cell capture followed by cDNA preparation using the Fluidigm C1 Single Cell Auto-Prep system;2)high throughput quantitative PCR assays and targeted template enrichment using the Fluidigm BioMark HD system;3) small noncoding RNA deep sequencing (sncRNA-Seq) or targeted DNA deep sequencing using the Ion Torrent PGM sequencer;4) ribosome profiling to determine translational status of mRNAs in a given tissue/organ using RiboTag mice and RNA-Seq;5) manipulation of a gene of interest to achieve overexpression, reduced expression, complete inactivation and replacement with another gene using the latest genome editing technologies including ZFNs, TALENs and Cas9-CRISPR in cultured cells. The technologies used in Core C represent the latest technological advancement and were developed in response to the requests from our investigators. In this proposal, we describe in details what services Core C will provide and how Core C will be operated and managed to serve well the needs of our investigators in using these technologies (Aimi), and achieve financial independence during or by the end of Phase III support (Aim2). With the most cutting edge technologies in hand and an executable business plan in place, we are confident that Core C will become part ofthe essential resources to not only our COBRE/INBRE investigators, but also other researchers in UNR or NISHE, and the expanding user base will ensure the ultimate goal of Phase III support, the long-term sustainability. This """"""""win-win"""""""" situation will be accomplished by the end of Phase III funding.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
1P30GM110767-01
Application #
8735447
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Nevada Reno
Department
Type
DUNS #
City
Reno
State
NV
Country
United States
Zip Code
89557
Wang, Zhuqing; Lee, Sandy; Oliver, Daniel et al. (2018) Prps1l1, a testis-specific gene, is dispensable for mouse spermatogenesis. Mol Reprod Dev 85:802-804
Shi, Junchao; Ko, Eun-A; Sanders, Kenton M et al. (2018) SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs. Genomics Proteomics Bioinformatics 16:144-151
Blanco, Luz P; Payne, Bryan L; Feyertag, Felix et al. (2018) Proteins of generalist and specialist pathogens differ in their amino acid composition. Life Sci Alliance 1:e201800017
Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel et al. (2018) Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ Epigenet 4:dvy010
Zhang, Yunfang; Zhang, Xudong; Shi, Junchao et al. (2018) Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 20:535-540
Tang, Chong; Klukovich, Rachel; Peng, Hongying et al. (2018) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A 115:E325-E333
Skinner, Michael K; Ben Maamar, Millissia; Sadler-Riggleman, Ingrid et al. (2018) Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 11:8
Singh, Mahendra; Miura, Pedro; Renden, Robert (2018) Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiol Aging 67:108-119
Baker, Salah A; Drumm, Bernard T; Skowronek, Karolina E et al. (2018) Excitatory Neuronal Responses of Ca2+ Transients in Interstitial Cells of Cajal in the Small Intestine. eNeuro 5:
Heredia, Dante J; Feng, Cheng-Yuan; Agarwal, Andrea et al. (2018) Postnatal Restriction of Activity-Induced Ca2+ Responses to Schwann Cells at the Neuromuscular Junction Are Caused by the Proximo-Distal Loss of Axonal Synaptic Vesicles during Development. J Neurosci 38:8650-8665

Showing the most recent 10 out of 42 publications