The primary focus of the Stem Cell Core is the isolation and characterization of various types of stem cells and the fate tracing of their committed derivatives, although it will also be useful for sorting neuronal and glial cells for many IDDRC projects. This is accomplished using flow cytometry, based on the detection of cell surface markers, fluorescent proteins expressed under the control of specific gene promoters within transfected vectors or staining of nucleic acids with various staining dyes. The core is instrumental in the purification and characterization of adult stem cells isolated from neural and skeletal muscle tissue, purification of progenitor cells from iPS (induced Pluripotent Stem) and ES (Embryonic Stem) ceil lines, and isolation of cells whether cultured or from tissue that are expressing a fluorescent protein under the control of a specific promoter in a transfected vector. The core is proficient and experienced in handling zebrafish, mouse, and human cells. The extensive experience of the core's leadership ensures investigators expert assistance for their experiments and training in the use of successful techniques. Our principle objective is to provide both IDDRC and non-IDDRC researchers with comprehensive stem cell and stem cell derivative isolation and characterization services in a timely, dependable and cost-effective manner.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Center Core Grants (P30)
Project #
5P30HD018655-34
Application #
8916421
Study Section
Special Emphasis Panel (ZHD1-DSR-Y)
Project Start
Project End
2016-09-22
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
34
Fiscal Year
2015
Total Cost
$67,684
Indirect Cost
$28,784
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Waber, Deborah P; Bryce, Cyralene P; Girard, Jonathan M et al. (2018) Parental history of moderate to severe infantile malnutrition is associated with cognitive deficits in their adult offspring. Nutr Neurosci 21:195-201
Sieker, Jakob T; Proffen, Benedikt L; Waller, Kimberly A et al. (2018) Transcriptional profiling of synovium in a porcine model of early post-traumatic osteoarthritis. J Orthop Res :
O'Connell, Amy E; Zhou, Fanny; Shah, Manasvi S et al. (2018) Neonatal-Onset Chronic Diarrhea Caused by Homozygous Nonsense WNT2B Mutations. Am J Hum Genet 103:131-137
Leviton, Alan; Dammann, Olaf; Allred, Elizabeth N et al. (2018) Neonatal systemic inflammation and the risk of low scores on measures of reading and mathematics achievement at age 10 years among children born extremely preterm. Int J Dev Neurosci 66:45-53
Korzeniewski, Steven J; Allred, Elizabeth N; O'Shea, T Michael et al. (2018) Elevated protein concentrations in newborn blood and the risks of autism spectrum disorder, and of social impairment, at age 10 years among infants born before the 28th week of gestation. Transl Psychiatry 8:115
Hirschberger, Rachel G; Kuban, Karl C K; O'Shea, Thomas M et al. (2018) Co-occurrence and Severity of Neurodevelopmental Burden (Cognitive Impairment, Cerebral Palsy, Autism Spectrum Disorder, and Epilepsy) at Age Ten Years in Children Born Extremely Preterm. Pediatr Neurol 79:45-52
Sveinsdóttir, Kristbjörg; Ley, David; Hövel, Holger et al. (2018) Relation of Retinopathy of Prematurity to Brain Volumes at Term Equivalent Age and Developmental Outcome at 2 Years of Corrected Age in Very Preterm Infants. Neonatology 114:46-52
Gilles, Floyd; Gressens, Pierre; Dammann, Olaf et al. (2018) Hypoxia-ischemia is not an antecedent of most preterm brain damage: the illusion of validity. Dev Med Child Neurol 60:120-125
Laprairie, Robert B; Petr, Geraldine T; Sun, Yan et al. (2018) Huntington's disease pattern of transcriptional dysregulation in the absence of mutant huntingtin is produced by knockout of neuronal GLT-1. Neurochem Int :
Kambara, Tracy K; Ramsey, Kathryn M; Dove, Simon L (2018) Pervasive Targeting of Nascent Transcripts by Hfq. Cell Rep 23:1543-1552

Showing the most recent 10 out of 1442 publications