REGULATORY MECHANISMS OF RAC-DEPENDENT DENDRITIC DEVELOPMENT AND PLASTICITY ABSTRACT Formation of a functional nervous system requires the proper development and remodeling of dendrites and dendritic spines, the primary sites of excitatory synapses in the brain. Rho family GTPases play critical roles in regulating these processes. In particular, the Rho GTPase Rac promotes dendritic arborization and the formation and maintenance of spines. Precise spatio-temporal regulation of Rac activity is essential for its function, since aberrant Rac signaling results in dendrite and spine abnormalities and cognitive disorders including mental retardation. Despite its importance, the mechanisms that regulate Rac signaling in neurons remain pooriy understood. We previously identified the Rac-specific activator Tiami as a critical regulator of dendrite, spine, and synapse development. We demonstrated that Tiami mediates both NMDA receptor-and EphB receptor-dependent spine development by coupling these receptors to Rac signaling pathways that control actin cytoskeletal remodeling and protein synthesis. Recently, we have also identified the Rac-specific inhibitor Bcr as a Tiami-interacting protein that blocks Tiami-induced Rac activation and actin remodeling. Overexpression and knockout experiments indicate that Bcr restricts the formation and growth of spines and dendrites. The complex between Tiami and Bcr may serve as an """"""""on-off switch"""""""" for precisely regulating Rac signaling in neurons, which is essential for the proper formation and remodeling of spines, synapses, and dendrites. To test this hypothesis, we propose the following specific aims: 1) to determine the role of Bcr in restricting synapse development and dendritic growth;2) to identify the mechanisms by which EphB and NMDA receptors regulate the Tiami-Bcr complex, and determine the consequences on Rac activation and synapse development;and 3) to elucidate the role of the Tiami-Bcr complex in regulating N-cadherinmediated synaptic adhesion. To address these questions, we will use a multifaceted approach employing a combination of molecular, cellular, biochemical, and high-resolution imaging techniques. Results from the proposed studies will provide critical insight into the fundamental mechanisms that regulate Rac activation and Rac-dependent synaptic and dendritic development in neurons, and help to elucidate how disruptions in Rac GTPase signaling give rise to cognitive disorders such as mental retardation.
Showing the most recent 10 out of 709 publications