The purpose of """"""""UNC Neuroscience Center Research Cores"""""""" is to enable breakthroughs in the treatment of neurological diseases. For the past nine years, this Center Grant has provided high level technical expertise and Core facilities supporting many NINDS-funded investigators at UNC-Chapel Hill, as well as other NIHfunded neuroscientists with projects related to NINDS priorities. The Cores have also supported numerous young investigators who have subsequently obtained NINDS or other NIH funding. Core services have focused on genomics, generation of mouse models, and confocal/multiphoton imaging. In the current funding period, we added an Assay Development Core that has provided our Center Cores with a key translational component. Access to state of the art techniques has allowed NINDS-funded and other neuroscientists to publish breakthrough research with strong translational relevance in the areas of neurogenetic diseases, brain development, pain, dopaminergic mechanisms, addiction, neuronal/glial interactions, and regulation of myelination. Our Center Grant has also facilitated the development of potential new treatments for Angelman Syndrome and chronic pain. UNC Neuroscience Research Cores have enjoyed strong institutional support with the UNC School of Medicine (SOM) continuously providing space to house the Cores, appropriate salary fractions for Faculty Directors, some salary support for research scientist Core Directors, and support for major equipment purchases during the past funding period. Further, our NINDS funded Cores leverage major investments that UNC has made in generation of animal models, massively parallel (next generation) sequencing, and highthroughput screening and chemical biology. For the competitive renewal, we will expand and enhance molecular services to support animal model generation and massively parallel sequencing. We request support for a Bioinformatics Core rather than for continued operation of an Affymetrix facility. Affymetrix services are now self-sufficient and will be taken over by the UNC School of Medicine. We propose enhancement and continued operation of our Confocal and Multiphoton Imaging Core. Our assay development core has been improved and renamed Translational Neuroscience. These Cores will support 15 NINDS-funded projects, projects of 13 other NIH - funded neuroscientists, and 7 young investigators who do not yet have R01 funding. As a group UNC Neuroscience Center Research Cores will allow NINDS-funded and other UNC neuroscientists seamlessly to generate mice for studies of fundamental mechanisms or disease process, perform state of the art imaging and bioinformatics analysis on these models, and finally to develop assays that can be used to advance new treatments for neurological diseases.

Public Health Relevance

UNC Neuroscience Center Research Cores will enable breakthroughs in the treatment of neurological diseases. We request support for four Core facilities that will allow UNC neuroscientists to generate mice for studies of disease mechanisms, perform state of the art imaging and bioinformatics analysis on these models, and finally to develop assays that can be used to advance new treatments for neurological diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
2P30NS045892-11
Application #
8452928
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Talley, Edmund M
Project Start
2003-07-01
Project End
2017-11-30
Budget Start
2014-02-01
Budget End
2014-11-30
Support Year
11
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Neurology
Type
Schools of Medicine
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Song, Liujiang; Llanga, Telmo; Conatser, Laura M et al. (2018) Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther 25:402-414
Zhang, Jing; Wu, Tao; Simon, Jeremy et al. (2018) VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science 361:290-295
Boyer, Nicholas P; Monkiewicz, Caroline; Menon, Shalini et al. (2018) Mammalian TRIM67 Functions in Brain Development and Behavior. eNeuro 5:
Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin et al. (2018) Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome. J Neurosci 38:2671-2682
Crowther, Andrew J; Lim, Szu-Aun; Asrican, Brent et al. (2018) An Adeno-Associated Virus-Based Toolkit for Preferential Targeting and Manipulating Quiescent Neural Stem Cells in the Adult Hippocampus. Stem Cell Reports 10:1146-1159
Allard, Denise E; Wang, Yan; Li, Jian Joel et al. (2018) Schwann cell-derived periostin promotes autoimmune peripheral polyneuropathy via macrophage recruitment. J Clin Invest 128:4727-4741
Yeh, Chia-Yu; Asrican, Brent; Moss, Jonathan et al. (2018) Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways. Neuron 99:493-510.e4
Thaxton, Courtney; Kloth, Alexander D; Clark, Ellen P et al. (2018) Common Pathophysiology in Multiple Mouse Models of Pitt-Hopkins Syndrome. J Neurosci 38:918-936
McCoy, Eric S; Taylor-Blake, Bonnie; Aita, Megumi et al. (2017) Enhanced Nociception in Angelman Syndrome Model Mice. J Neurosci 37:10230-10239
Hutton, Scott R; Otis, James M; Kim, Erin M et al. (2017) ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions. J Neurosci 37:8102-8115

Showing the most recent 10 out of 158 publications