The aim of the Multiphoton Imaging/EIectrophysiology Core is to provide instrumentation for analyzing protein localization, protein dynamics, and protein-protein interactions with high resolution. This facility will also allow users to perform time-lapse imaging of multiple fluorophores in living cells and tissues, and combine high resolution imaging of fluorescently tagged proteins or ion indicator dyes with electrophysiological monitoring of electrical activity. This Core is anchored by a Zeiss LSM 510 META NLO confocal microscope equipped with two visible lasers for performing traditional single-photon confocal imaging, and one near-infrared pulsed laser for two-photon imaging. In addition, the stage of this microscope has the capacity to either be enclosed to create an incubator for long-term time-lapse imaging, or to be surrounded by electrophysiology equipment to allow simultaneous whole-cell recording and imaging. The unique capabilities of this facility will serve as a resource for other NINDS funded investigators at JHU SOM and will establish new approaches for studying neurobiological processes that will benefit the greater JHU community. The equipment and capabilities of this core are not duplicated in any core facilities at JHU.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS050274-03
Application #
7455111
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
3
Fiscal Year
2007
Total Cost
$139,527
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kajstura, Tymoteusz J; Dougherty, Sarah E; Linden, David J (2018) Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury. J Neurosci Res 96:512-526
Babola, Travis A; Li, Sally; Gribizis, Alexandra et al. (2018) Homeostatic Control of Spontaneous Activity in the Developing Auditory System. Neuron 99:511-524.e5
Dresselhaus, Erica C; Boersma, Matthew C H; Meffert, Mollie K (2018) Targeting of NF-?B to Dendritic Spines Is Required for Synaptic Signaling and Spine Development. J Neurosci 38:4093-4103
Larson, Valerie A; Mironova, Yevgeniya; Vanderpool, Kimberly G et al. (2018) Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. Elife 7:
Jiang, Zheng; Yue, Wendy W S; Chen, Lujing et al. (2018) Cyclic-Nucleotide- and HCN-Channel-Mediated Phototransduction in Intrinsically Photosensitive Retinal Ganglion Cells. Cell 175:652-664.e12
Hughes, Ethan G; Orthmann-Murphy, Jennifer L; Langseth, Abraham J et al. (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21:696-706
Minamisawa, Genki; Kwon, Sung Eun; Chevée, Maxime et al. (2018) A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices. Cell Rep 23:2718-2731.e6
Zhang, Ke; Daigle, J Gavin; Cunningham, Kathleen M et al. (2018) Stress Granule Assembly Disrupts Nucleocytoplasmic Transport. Cell 173:958-971.e17
Chevée, Maxime; Robertson, Johanna De Jong; Cannon, Gabrielle Heather et al. (2018) Variation in Activity State, Axonal Projection, and Position Define the Transcriptional Identity of Individual Neocortical Projection Neurons. Cell Rep 22:441-455
Wang, Qiang; Chiu, Shu-Ling; Koropouli, Eleftheria et al. (2017) Neuropilin-2/PlexinA3 Receptors Associate with GluA1 and Mediate Sema3F-Dependent Homeostatic Scaling in Cortical Neurons. Neuron 96:1084-1098.e7

Showing the most recent 10 out of 83 publications