Since its establishment in 2005, the New York University Protein Mass Spectrometry Core Facility for neuroscience has provided cutting edge mass spectrometry-based protein analysis to molecular neuroscientists at the New York University School of Medicine. The purpose of this grant is to provide continued funding to enable neuroscientists at NYU to take advantage of sophisticated and involved protein mass spectrometry and proteomics that would otherwise not be available to them, and guarantee them access to the technology. The proposed Protein Mass Spectrometry Core Facility for Neuroscience would enable NINDS- and other NIH- funded neuroscientists at New York University to identify from one to thousands of proteins of interest, to characterize posttranslational modifications of these proteins such as phosphorylation, glycosylation, proteolysis and modification by lipids, to perform functional proteomics studies to identify the proteins involved in key signal transduction processes in neurons, to characterize protein-protein interactions by surface plasmon resonance and to perform automated RNAi experiments. Research areas that would greatly benefit from this core facility include nerve growth and regeneration, neuromuscular junction formation, cancer metastasis, axon guidance, axon domain assembly, lesion induced synaptic plasticity, potassium channel function, Alzheimer's and other amyloid diseases, brain development, aging, brain cancer, and neurotransmitter receptor trafficking.
The NYU Mass Spectrometry Core Facility for Neuroscience ensures that neuroscientists have access to cutting edge mass spectrometry technology to enable their basic research in such key areas as nerve growth and regeneration, neuromuscular disorders, cerebral hemorrhagic stroke, nervous system development, synaptic plasticity, affective disorders such as depression, Alzheimer's and other amyloid diseases, and aging.
Showing the most recent 10 out of 78 publications