Applications of magnetic resonance (MR) techniques to research in the life sciences are growing rapidly. State-of-the-art heteronuclear MR spectroscopy (MRS) and multi-modal MR imaging (MRI) methodologies cultivated at the Magnetic Resonance Research Center (MRRC) at Yale have moved in vivo animal research into central roles in experimental neuroscience, addressing fundamental issues with far reaching implications for brain function. Since the formation of the Yale MRRC in the early in 1980s, the number of . horizontal-bore magnets for in vivo studies have multiplied three-fold in 2004. The present number of ' magnets for in vivo studies - three each for animals and humans - were needed to match the growing number of investigators across many disciplines - a majority of whom are supported by NINDS. The strength of the Yale MRRC has been, and still is, the dynamic interaction between rodent and human research. Active interplay between heteronuclear MRS and multi-modal MRI methods in rodents and humans have furthermore rapidly progressed. Because MR technology requires unwavering infrastructural support for state-of-the-art exploits to be successfully applied, long-term stability of Yale MRRC is contingent on sustained support. A program in """"""""Quantitative Neuroscience with Magnetic Resonance (QNMR)"""""""" at Yale will support shared resources and facilities used by NINDS-funded investigators at Yale, and thereby generate greater productivity than would be possible via independent efforts. QNMR will consist of three research Cores - each dedicated to improving effectiveness of ongoing research based upon multimodal MRI, heteronuclear MRS, neurophysiology - and one service Core - designed for rapid data analysis, access, sharing, and backup using high-performance cluster of workstations. We expect that QNMR will promote a more cooperative and interactive research environment for neuroscientists who are utilizing MR technology at Yale, and will nurture new cross-disciplinary approaches in medicine, physiology, and neuroscience.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS052519-04
Application #
8046302
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
4
Fiscal Year
2010
Total Cost
$406,672
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Benveniste, Helene; Dienel, Gerald; Jacob, Zvi et al. (2018) Trajectories of Brain Lactate and Re-visited Oxygen-Glucose Index Calculations Do Not Support Elevated Non-oxidative Metabolism of Glucose Across Childhood. Front Neurosci 12:631
Thompson, Garth J; Sanganahalli, Basavaraju G; Baker, Keeley L et al. (2018) Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neuroimage 172:586-596
Yu, Yuguo; Herman, Peter; Rothman, Douglas L et al. (2018) Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab 38:1339-1353
Johnson, Matthew B; Sun, Xingshen; Kodani, Andrew et al. (2018) Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature 556:370-375
Johnson, Frances K; Delpech, Jean-Christophe; Thompson, Garth J et al. (2018) Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Transl Psychiatry 8:49
Mortensen, Kristian N; Gjedde, Albert; Thompson, Garth J et al. (2018) Impact of Global Mean Normalization on Regional Glucose Metabolism in the Human Brain. Neural Plast 2018:6120925
Thompson, Garth J (2018) Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 180:448-462
Feng, Li; Motelow, Joshua E; Ma, Chanthia et al. (2017) Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei. J Neurosci 37:11441-11454
Kundishora, Adam J; Gummadavelli, Abhijeet; Ma, Chanthia et al. (2017) Restoring Conscious Arousal During Focal Limbic Seizures with Deep Brain Stimulation. Cereb Cortex 27:1964-1975
Tricò, Domenico; Prinsen, Hetty; Giannini, Cosimo et al. (2017) Elevated ?-Hydroxybutyrate and Branched-Chain Amino Acid Levels Predict Deterioration of Glycemic Control in Adolescents. J Clin Endocrinol Metab 102:2473-2481

Showing the most recent 10 out of 149 publications