Individual NINDS grantees have strived to employ and develop cutting-edge genetic tools to manipulate the mouse genome to test specific hypotheses proposed in their NINDS-funded research projects. Producing many of these lines has required multiple steps in generating mouse ES cells and these lines are often laborious or difficult to obtain. The cost and time for generating such ES lines is a major bottleneck for successful animal model development as it prohibits many NINDS funded investigators from generating genetically-engineering mice, even for labs that are versed in the required advanced and very specific technologies. A central genome modification core will provide services to break the barriers to generate genetically modified mouse lines by supporting the production of designer ES-cell lines. A centralized GM Core will increase efficiency and lower the cost of generating such lines. In addition, a central service will provide opportunities for synergistic development of lines that will be of value across all user groups. The Institute has made a commitment to provide space for establishment of the GM core that would lead the way to meet the evolving needs of Neuroscience Center investigators. The major goal of the GM Core is to provide services for manipulation ofthe mouse genome in ES cells that are essential for studies ofthe mechanisms of neural function, structure and development as well as the generation of both in vitro and in vivo mouse models of diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS072031-02
Application #
8381175
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
2
Fiscal Year
2012
Total Cost
$67,927
Indirect Cost
$32,270
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Niederholtmeyer, Henrike; Chaggan, Cynthia; Devaraj, Neal K (2018) Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat Commun 9:5027
Ramaswamy, Suvasini; Tonnu, Nina; Menon, Tushar et al. (2018) Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restoration of Factor IX. Cell Rep 23:1565-1580
Hsu, Cynthia L; Lee, Elian X; Gordon, Kara L et al. (2018) MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun 9:942
Sonntag, Tim; Vaughan, Joan M; Montminy, Marc (2018) 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J 285:467-480
Jaeger, Baptiste N; Linker, Sara B; Parylak, Sarah L et al. (2018) A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons. Nat Commun 9:3084
Sweeney, Lora B; Bikoff, Jay B; Gabitto, Mariano I et al. (2018) Origin and Segmental Diversity of Spinal Inhibitory Interneurons. Neuron 97:341-355.e3
Kim, Seongjae; Ma, Lina; Shokhirev, Maxim N et al. (2018) Multicilin and activated E2f4 induce multiciliated cell differentiation in primary fibroblasts. Sci Rep 8:12369
Konermann, Silvana; Lotfy, Peter; Brideau, Nicholas J et al. (2018) Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 173:665-676.e14
Dowling, Cari; Allen, Nicola J (2018) Mice Lacking Glypican 4 Display Juvenile Hyperactivity and Adult Social Interaction Deficits. Brain Plast 4:197-209
Chien, Yuan-Hung; Srinivasan, Shyam; Keller, Ray et al. (2018) Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer. Dev Cell 45:316-330.e4

Showing the most recent 10 out of 53 publications