The Neuroscience Center Behavior Core will establish a centralized resource for the analysis of animal behavior. The objectives of this core resource will be to provide uniform behavioral analysis of rodents employing a variety of behavioral platforms appropriate for the research needs of Salk Institute Neuroscience Center faculty and to provide expertise for the interpretation of results. Behavioral studies are an important component of modern neuroscience research. For example, careful analysis of changes in rat behavior in the radial water maze showed that the ability to learn new tasks decreases with age. These changes were eventually found to be reflected at the cellular level, in particular, in the dentate gyrus of the hippocampus where aging is associated with a reduction in the number of axons in the medial perforant path, as well as the density of synaptic contacts impinging on granule cells. Subsequently this reduction in the input to the hippocampus was found accompanied by a decrease in synaptic plasticity, longterm potentiation has a higher threshold and lasts for a shorter time in aged animals, and there is an agedependent decrease in NMDA receptor-mediated responses - all discoveries stemming from the initial analysis of animal behavior.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS072031-03
Application #
8517841
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$258,261
Indirect Cost
$122,771
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Konermann, Silvana; Lotfy, Peter; Brideau, Nicholas J et al. (2018) Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 173:665-676.e14
Dowling, Cari; Allen, Nicola J (2018) Mice Lacking Glypican 4 Display Juvenile Hyperactivity and Adult Social Interaction Deficits. Brain Plast 4:197-209
Chien, Yuan-Hung; Srinivasan, Shyam; Keller, Ray et al. (2018) Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer. Dev Cell 45:316-330.e4
Niederholtmeyer, Henrike; Chaggan, Cynthia; Devaraj, Neal K (2018) Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat Commun 9:5027
Ramaswamy, Suvasini; Tonnu, Nina; Menon, Tushar et al. (2018) Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restoration of Factor IX. Cell Rep 23:1565-1580
Hsu, Cynthia L; Lee, Elian X; Gordon, Kara L et al. (2018) MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun 9:942
Sonntag, Tim; Vaughan, Joan M; Montminy, Marc (2018) 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J 285:467-480
Jaeger, Baptiste N; Linker, Sara B; Parylak, Sarah L et al. (2018) A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons. Nat Commun 9:3084
Sweeney, Lora B; Bikoff, Jay B; Gabitto, Mariano I et al. (2018) Origin and Segmental Diversity of Spinal Inhibitory Interneurons. Neuron 97:341-355.e3
Kim, Seongjae; Ma, Lina; Shokhirev, Maxim N et al. (2018) Multicilin and activated E2f4 induce multiciliated cell differentiation in primary fibroblasts. Sci Rep 8:12369

Showing the most recent 10 out of 53 publications