1. HIGH AND ULTRAHIGH FIELD IMAGE ACQUISITION AND ENGINEERING PI: Pierre-Francois van de Moortlele, PhD Core Aims The long-term goal of this core is to provide the means to enhance, broaden and accelerate a large array of ambitious neuroscience research projects that are increasingly utilizing high (3 and 4T) and ultrahigh (7T and above) field MR Imaging instruments and novel image acquisition and reconstruction techniques to investigate brain structure and function. Multiple studies have now amply demonstrated that MRI at higher magnetic fields can provide significant advantages in signal-to-noise ratio (SNR), spatial resolution, anatomical delineation, and anatomical and functional contrast. When combined with the appropriate imaging methods, these gains can be transformative in basic and translational neuroscience projects. However, access to such advanced capabilities by neuroscience researchers is virtually impossible outside the context of a collaborative and multidisciplinary relationship, especially (but not only) when instrumentation at the cutting-edge of the field, such as those operating at high (HF) and ultrahigh fields (UHF), and advanced, asof- yet commercially unavailable imaging methods are employed.
The aim of this core is to provide the necessary support and infrastructure that will allow a large community of NINDS funded investigators to utilize advanced imaging methodologies and instrumentation in CMRR where there exists a large parallel effort (funded by other sources) on instrumentation and methodology development.
Showing the most recent 10 out of 177 publications