The ability to reprogram somatic cells into pluripotent stem cells (induced pluripotent stem cells - iPSCs) has transformed both the study of basic human cellular neurobiology and the examination of the cellular basis of human diseases of the nervous system. This technology makes it possible to study the development and cell biology of human neural stem cells, numerous human neuronal phenotypes, and human astrocytes and oligodendroglia. Further, somatic cells from patients with a variety of neurological diseases can be reprogrammed to allow study of neurons and glia with the genotypes of the afflicted individuals. There is no doubt that insights gained from such studies will translate into better treatments and eventually cures for neurological diseases. The strategic goal of this proposal is to put this critical technology into the hands of a highly productive group of neuroscientists at NU that currently receive nearly $6 million (direct costs) in funding from NINDS. Specifically the Center will: 1. Provide the facilities and expertise to enable NINDS investigators to culture and differentiate human iPSCs and to enable them to take advantage of cell repositories at the Coriell Institute and elsewhere. New iPSC lines will be created as needed for programs of NINDS investigators, and these lines will be deposited in the NINDS human cell line repository at the Coriell Institute 2. Provide the facilities and expertise to define the phenotype of differentiated iPSCs including morphology, electrical and other properties of iPSC-derived neurons and glia. 3. Enable NINDS investigators to utilize in their research programs new nanotechnology advances developed at NU for the creation and analysis of iPSCs. The attainment of these goals will not only have a transforming impact on the NINDS-funded research programs at NU and leverage the NINDS investment, but will also significantly accelerate the delivery of these technologies to the broader neuroscience community, quicken the pace of scientific discovery and promote the development of new treatments for neurological disorders.

Public Health Relevance

It is now possible to take skin or other cells from patients with neurological disorders and change them into stem cells. In turn these cells can be differentiated into neurons, the electrically excitable cells in the brain, and other brain cell types. Cells from patients afflicted with disease can then be compared with those from normal individuals to gain understanding of the causes of the disease and to help develop new treatments.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-R (59))
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Schools of Medicine
United States
Zip Code
Zunke, Friederike; Moise, Alexandra C; Belur, Nandkishore R et al. (2018) Reversible Conformational Conversion of ?-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 97:92-107.e10
Nguyen, Maria; Krainc, Dimitri (2018) LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease. Proc Natl Acad Sci U S A 115:5576-5581
Huang, Tianzhi; Kim, Chung Kwon; Alvarez, Angel A et al. (2017) MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma. Cancer Cell 32:840-855.e8
Burbulla, Lena F; Song, Pingping; Mazzulli, Joseph R et al. (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 357:1255-1261
Matsuoka, Akihiro J; Morrissey, Zachery D; Zhang, Chaoying et al. (2017) Directed Differentiation of Human Embryonic Stem Cells Toward Placode-Derived Spiral Ganglion-Like Sensory Neurons. Stem Cells Transl Med 6:923-936
Valdez, Clarissa; Wong, Yvette C; Schwake, Michael et al. (2017) Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 26:4861-4872
Mazzulli, Joseph R; Zunke, Friederike; Tsunemi, Taiji et al. (2016) Activation of ?-Glucocerebrosidase Reduces Pathological ?-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci 36:7693-706
Huang, Tianzhi; Alvarez, Angel A; Pangeni, Rajendra P et al. (2016) A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun 7:12885
Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole et al. (2016) ?-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci U S A 113:1931-6
Duan, Lishu; Peng, Chian-Yu; Pan, Liuliu et al. (2015) Human pluripotent stem cell-derived radial glia recapitulate developmental events and provide real-time access to cortical neurons and astrocytes. Stem Cells Transl Med 4:437-47

Showing the most recent 10 out of 13 publications