CORE D (ELECTROPHYSIOLOGY) ABSTRACT The Electrophysiology Core provides assistance with electrophysiological analyses of neurons and glia in tissue slices and cultured cells. The Core can perform the experiments for investigators, or provide training and access to the specialized equipment necessary to perform such experiments. The Core also provides expert consultation on electrophysiological projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS104177-04
Application #
10005511
Study Section
Special Emphasis Panel (ZNS1)
Project Start
2017-09-30
Project End
2021-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Fenn, J Daniel; Monsma, Paula C; Brown, Anthony (2018) Axonal neurofilaments exhibit frequent and complex folding behaviors. Cytoskeleton (Hoboken) 75:258-280
Hesp, Zoe C; Yoseph, Rim Y; Suzuki, Ryusuke et al. (2018) Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice. J Neurosci 38:1366-1382
Du, Yixing; Wang, Wei; Lutton, Anthony D et al. (2018) Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp Neurol 303:1-11
Kiyoshi, Conrad M; Du, Yixing; Zhong, Shiying et al. (2018) Syncytial isopotentiality: A system-wide electrical feature of astrocytic networks in the brain. Glia 66:2756-2769
Fenn, J Daniel; Johnson, Christopher M; Peng, Juan et al. (2018) Kymograph analysis with high temporal resolution reveals new features of neurofilament transport kinetics. Cytoskeleton (Hoboken) 75:22-41
Ngwenya, Laura B; Mazumder, Sarmistha; Porter, Zachary R et al. (2018) Implantation of Neuronal Stem Cells Enhances Object Recognition without Increasing Neurogenesis after Lateral Fluid Percussion Injury in Mice. Stem Cells Int 2018:4209821
Banasavadi-Siddegowda, Yeshavanth Kumar; Welker, Alessandra M; An, Min et al. (2018) PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol 20:753-763
Kigerl, Kristina A; Lai, Wenmin; Wallace, Lindsay M et al. (2018) High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain Behav Immun 72:22-33
Blissett, A R; Deng, B; Wei, P et al. (2018) Sub-cellular In-situ Characterization of Ferritin(iron) in a Rodent Model of Spinal Cord Injury. Sci Rep 8:3567
Morrow, Zachary T; Maxwell, Adrienne M; Hoshijima, Kazuyuki et al. (2017) tbx6l and tbx16 are redundantly required for posterior paraxial mesoderm formation during zebrafish embryogenesis. Dev Dyn 246:759-769

Showing the most recent 10 out of 15 publications