The overall objective of the Caenorhabditis Genetics Center (CGC) is to promote research on the small metazoan Caenorhabditis elegans by acquiring, maintaining, and distributing genetically characterized nematode stocks. Researchers throughout the world use genetic stocks obtained from the CGC in diverse basic and applied research endeavors. Studies using this premier model organism have led to fundamental insights into basic biological mechanisms, including the genetic basis of programmed cell death, the discovery of microRNAs, and the mechanism of RNA interference in animals. The nematode has also proved important for understanding mechanisms of cancer progression and other diseases including Alzheimer's and Parkinson's, as well as for revealing basic mechanisms underlying human development. In addition, C. elegans serves as a key model for illuminating our understanding of parasitic nematodes with relevance to human and livestock health. As the sole general stock center for the nematode C. elegans, the CGC is an extremely important international research resource. The high demand for CGC strains reflects their great importance to the research community;currently more than 25,000 strains are distributed per year. The CGC curates C. elegans strains and distributes them upon request through an on-line ordering system. A new research component will be implemented to expand the activities of the CGC. The C. elegans genetic tool-kit will be enhanced through the generation of genetic tools to aid researchers in manipulations of lethal and sterile mutations.

Public Health Relevance

The Caenorhabditis Genetics Center (CGC) is the international repository and distribution center for the nematode C. elegans. Researchers throughout the world have used strains provided by the CGC to make important discoveries in diverse areas of biology, many with relevance to human health, including insights into neurodegenerative diseases, aging and cancer.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Material Resource Grants (P40)
Project #
3P40OD010440-01S1
Application #
8520983
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
Chang, Michael
Project Start
2012-09-01
Project End
2017-05-31
Budget Start
2012-09-01
Budget End
2013-05-31
Support Year
1
Fiscal Year
2012
Total Cost
$12,160
Indirect Cost
$4,160
Name
University of Minnesota Twin Cities
Department
Genetics
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Cooper, Jason F; Spielbauer, Katie K; Senchuk, Megan M et al. (2018) ?-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease. Exp Neurol 310:58-69
Krauchunas, Amber R; Mendez, Ernesto; Ni, Julie Zhouli et al. (2018) spe-43 is required for sperm activation in C. elegans. Dev Biol 436:75-83
Grimbert, Stéphanie; Vargas Velazquez, Amhed Missael; Braendle, Christian (2018) Physiological Starvation Promotes Caenorhabditis elegans Vulval Induction. G3 (Bethesda) 8:3069-3081
Pani, Ariel M; Goldstein, Bob (2018) Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. Elife 7:
Mangal, Sriyash; Sacher, Jennifer; Kim, Taekyung et al. (2018) TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis. J Cell Biol 217:837-848
Ulicna, Livia; Rohozkova, Jana; Hozak, Pavel (2018) Multiple Aspects of PIP2 Involvement in C. elegans Gametogenesis. Int J Mol Sci 19:
O'Brien, Daniel; Jones, Laura M; Good, Sarah et al. (2018) A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis. Cell Rep 23:3905-3919
Ishidate, Takao; Ozturk, Ahmet R; Durning, Daniel J et al. (2018) ZNFX-1 Functions within Perinuclear Nuage to Balance Epigenetic Signals. Mol Cell 70:639-649.e6
Kim, Kyung Won; Tang, Ngang Heok; Andrusiak, Matthew G et al. (2018) A Neuronal piRNA Pathway Inhibits Axon Regeneration in C. elegans. Neuron 97:511-519.e6
Polanowska, Jolanta; Chen, Jia-Xuan; Soulé, Julien et al. (2018) Evolutionary plasticity in the innate immune function of Akirin. PLoS Genet 14:e1007494

Showing the most recent 10 out of 1478 publications